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Introduction

A problem in verification : model-checking of MSO over trees
produced by higher-order recursion schemes

It is decidable (Ong 2006)

Many connections with semantics appear in this result

Our aim: obtaining this decidability result by semantic means
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Higher-order recursion schemes

Models of recursive programs used in verification since the 60’s

Informally : we have a ranked alphabet Σ, non-terminals, variables,
an axiom and parametrized rewriting rules

Example : Σ = {a : 2, b : 1, c : 0}.
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Higher-order recursion schemes : an example

S → F c
F x → a x (F (b x))

generates S
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λ-calculus

λ-calculus is a calculus of functions

It is built from variables and constants by abstraction and application

Grammar : t ::= x | λx .t | t1 t2

Example :
λf . f ( f ( a ) )

is a program taking a function f as input and applying it twice to a
constant a.
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Simply-typed λ-calculus

It is the fragment of the λ-calculus typable by the following rules :

Axiom
Γ , x : A ` x : A

Γ ` M : A⇒ B Γ ` N : AApplication
Γ ` MN : B

Γ, x : A ` M : B
Abstraction

Γ ` λx .M : A⇒ B

With these rules we can type the non-terminals of recursion schemes,
taking an appropriate context (in our example, a : o ⇒ o ⇒ o ∈ Γ).

Types = formulas of minimal logic
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Higher-order recursion schemes : back to the example

S → F c
F x → a x (F (b x))

generates
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Higher-order recursion schemes : back to the example

S → F c
F → λx . a x (F (b x))

where F : o ⇒ o
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Back to our verification problem

We use recursion schemes to build trees corresponding to all the
possible behaviours of a progam (= a λ-term)

We want to express MSO properties over them

Over such trees :

MSO ⇔ modal µ-calculus ⇔ alternating parity tree automata

Here we will not discuss the parity issue.
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Alternating tree automata

A kind of (top-down) tree automata. . .

. . . whose run-trees have a very special shape

During a run, an automaton can duplicate or drop a subtree

In semantics, we know such a behaviour: the one of the exponential
of linear logic !
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Alternating tree automata

δ maps a state and a Σ symbol to a conjunction of states to label each
son :

Example : δ(q0, a) = (1, q1) ∧ (2, q0) ∧ (2, q2)

The automaton duplicates the right son, runs with state q0 on a copy and
q2 on the other, and runs with q1 on the left son.
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Alternating tree automata: example of an execution

a

a

a

...b

b

c

b

c

c

We start from state q0.
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Alternating tree automata and typing

Another point of view : δ gives a way to type the symbols of Σ.

We had a : o ⇒ o ⇒ o.

We will have a : q1 ⇒ (q0 ∧ q2)⇒ q0 : we refine types by interpreting the
base type o with Q.

This extends to terms, and thus to HORS rules, for example :

λf .λx . f x x : (q0 ⇒ q1⇒ q2)⇒ (q0 ∧ q1)⇒ q2
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Alternating tree automata and typing

Kobayashi (2009): a type system where

typability of a recursion scheme
=

its value tree is accepted by a given automaton

Model checking thus amounts to:

Computing the biggest type for every non-terminal, which has to be
consistent with rewriting

Checking that S has type the initial state
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Alternating tree automata and typing

` τj :: κ (∀j ∈ J)
Axiom

Γ , x :
∧

j∈J τj :: κ ` x : τj :: κ

Γ ` M : (
∧

j∈J τj )→ σ :: κ→ κ′ Γ ` N : τj :: κ (∀j ∈ J)
App

Γ ` MN : σ :: κ′

Γ, x :
∧

j∈J τj :: κ ` M : σ :: κ′

Lambda
Γ ` λx .M : (

∧
j∈J τj )→ σ :: κ→ κ′

Refines usual λ-calculus typing with intersection types. δ types Σ symbols.

Note the duplication of typing proofs for N in the App rule.
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Linear logic and intersection types

Linear logic comes from the study of models of programming
languages

It is a logic of resources

An hypothesis must be used exactly once – the modality ! relaxes this

The point for us :

A⇒ B = !A ( B
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Linear logic and intersection types

A⇒ B = !A ( B

Meaning : a (general) function has the power to duplicate or drop every of
its arguments, before using all the copies linearly.

Point of view of resource management.

If we refine o with Q, an element of !o is a collection of states.

An element of !o ( o = several states producing exactly one state.
= an intersection of states returning a state
= the alternating behaviour of a unary symbol
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Linear logic and intersection types

In the Application rule - as in the alternating runs - we actually need
several copies (or none) of some terms/subtrees.

So the intersection looks like the ! modality

What if we consider no longer types in minimal logic, but types in linear
logic instead ?

This idea leads us to equivalent type systems, in which typing amounts to
interpreting terms in models of linear logic.
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Models, terms and types

In a model, a type is interpreted as a mathematical object

For example, in a qualitative model,

!o ( o = Pfin(Q)× Q

A term is then interpreted as a subset of (the interpretation of) its
type.

Here : we can think of the interpretation of a term as the set of all its
possible intersection types.

And they give all the possible δ accepting the term !
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Linear typing systems

We obtained two different linear typing systems for HORS.

They differ on their answer to the question: what is a collection of states ?

A (coherent) set of elements of Q ?

A multiset of elements of Q ?

The choice of the answer has an impact on the properties of the
intersection of types.
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Linear typing systems

The two possible answers correspond to two different kinds of models:

Set-based interpretation = idempotent intersection types
= focus on states used in the computation

without counting them
= qualitative models

Multiset-based interpretation = non-idempotent intersection types
= states and their multiplicities
= quantitative models
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Semantics of alternating automata

We obtained that in the qualitative model ScottL :

an alternating TA runs successfully run over the tree produced by a term
=

the intersection types given by δ belong to the semantics of the term

So that we can perform ”semantic” model-checking by :

1 Computing the semantics of a term in the model

2 Translating δ into a set of intersection types

3 Checking whether this set belongs to the semantics of the term
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Semantics of alternating automata

We have obtained the same result in the quantitative model Rel.

Moreover, with our type system reflecting Rel, we can describe a run over
a term only by a derivation in (indexed) linear logic, which corresponds to
the resource management of the automaton.

We can thus forget the term and only study an object which reflects how
its behaviour affects states of an automaton.
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Our next concerns

First of all, we need to deal properly with recursion and generation of
infinite trees.

Then we will study the connection between:

Rel, which reflects the (infinitary) execution of the automaton

ScottL, the finitary model in which we can decide the existence of an
alternating run

Ehrhard (2012) : ”ScottL is Rel where you do not count the multiplicities”

How do this semantically explain the decidability result ?

Another point: dealing with the parity condition (= all MSO).
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