Relational semantics of linear logic
and higher-order model-checking

Charles Grellois Paul-André Melliès

PPS & LIAFA — Université Paris 7
University of Dundee

CSL — September 8, 2015
TU Berlin
Model-checking higher-order programs

A well-known approach in verification: model-checking.

- Construct a model M of a program
- Specify a property φ in an appropriate logic
- Make them interact: the result is whether

$$M \models \varphi$$

When the model is a word, a tree... of actions: translate φ to an equivalent automaton:

$$\varphi \mapsto A_\varphi$$
Model-checking higher-order programs

A well-known approach in verification: \textit{model-checking}.

- Construct a \textit{model} M of a program \rightarrow higher-order trees
- Specify a \textit{property} φ in an appropriate \textit{logic}
- Make them \textit{interact}: the result is whether

$$M \models \varphi$$

When the model is a word, a tree... of actions: translate φ to an \textit{equivalent automaton}:

$$\varphi \mapsto A_\varphi$$
Model-checking higher-order programs

A well-known approach in verification: model-checking.

- Construct a model \mathcal{M} of a program \rightarrow higher-order trees
- Specify a property φ in an appropriate logic \rightarrow MSO
- Make them interact: the result is whether

$$\mathcal{M} \models \varphi$$

When the model is a word, a tree... of actions: translate φ to an equivalent automaton:

$$\varphi \mapsto A_\varphi$$
Model-checking higher-order programs

A well-known approach in verification: model-checking.

- Construct a model M of a program \rightarrow higher-order trees
- Specify a property φ in an appropriate logic \rightarrow MSO
- Make them interact: the result is whether

$$M \models \varphi$$

When the model is a word, a tree... of actions: translate φ to an equivalent automaton:

$$\varphi \mapsto A_\varphi$$

\rightarrow alternating parity tree automata (APT)
Trees and types

Model-checking of infinite trees of actions:

Three actions here: $\Sigma = \{ \text{if} : 2, \text{data} : 1, \text{Nil} : 0 \}$.

Call σ the type of trees (and more generally of terms with free variables of order ≤ 1, given by Σ).
Trees and types

An element of type $o \rightarrow o$:

\[
\lambda x \text{ if } \text{if } \text{data} \text{ if } \text{data} : \text{data} \text{ if } x
\]

Applying it to Nil gives the previous tree.
where “\(\lambda \Sigma\)” stands for \(\lambda \text{if} \cdot \lambda \text{data} \cdot \lambda \text{Nil}.\), has type:

\[
o(\Sigma) \rightarrow o = (o \rightarrow o \rightarrow o) \rightarrow (o \rightarrow o) \rightarrow o \rightarrow o
\]

Church encoding of trees.
Linear decomposition of the intuitionistic arrow

In linear logic,

\[A \rightarrow B = ! A \multimap B \]

\(! A \) allows to duplicate or to drop \(A \)

\(\multimap \) uses linearly (once) each copy
Linear decomposition of the intuitionistic arrow

\[(o \rightarrow o \rightarrow o) \rightarrow (o \rightarrow o) \rightarrow o \rightarrow o\]

translates as

\[!(o \rightarrow !o \rightarrow o) \rightarrow !(o \rightarrow o) \rightarrow !o \rightarrow o\]

In the relational semantics of linear logic, with \([o] = Q\),

\[![A] = \mathcal{M}_{fin}([A])\quad\text{and}\quad [A \rightarrow B] = [A] \times [B]\]

For instance,

\[[o \rightarrow o \rightarrow o] = \mathcal{M}_{fin}(Q) \times \mathcal{M}_{fin}(Q) \times Q\]
Linear decomposition of the intuitionistic arrow

\[(o \rightarrow o \rightarrow o) \rightarrow (o \rightarrow o) \rightarrow o \rightarrow o\]

translates as

\[(! (l o \rightarrow! o \rightarrow o) \rightarrow! (l o \rightarrow o) \rightarrow! o \rightarrow o)\]

Complain: where is model-checking?

We mentioned alternating parity tree automata…
Alternating parity tree automata

For a MSO formula \(\varphi \),

\[\langle G \rangle \models \varphi \]

iff an equivalent APT \(A_{\varphi} \) has a run over \(\langle G \rangle \).

\[
\text{APT} = \text{alternating tree automata (ATA) + parity condition.}
\]
Alternating tree automata

ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically: $\delta(q_0, \text{if}) = (2, q_0) \land (2, q_1)$.
Alternating tree automata

ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically: \(\delta(q_0, \text{if}) = (2, q_0) \land (2, q_1) \).

\[
\begin{array}{c}
\text{if } q_0 \\
\text{Nil} & \text{if}
\end{array}
\]

\[
\begin{array}{c}
\text{data} & \text{if} \\
\text{Nil} & \text{Nil} & \text{data}
\end{array}
\]

\[
\begin{array}{c}
\text{data} \\
\text{Nil}
\end{array}
\]

\[
\begin{array}{c}
\text{if } q_0 \\
\text{if } q_0 \\
\text{if } q_1
\end{array}
\]

\[
\begin{array}{c}
\text{data} & \text{if} \\
\text{Nil} & \text{Nil}
\end{array}
\]

\[
\begin{array}{c}
\text{data} \\
\text{Nil}
\end{array}
\]

\[
\begin{array}{c}
\text{if} \\
A_\varphi
\end{array}
\]
Alternating tree automata

ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically: \(\delta(q_0, \text{if}) = (2, q_0) \land (2, q_1) \).

In fact, \text{if} has the linear type

\[
\text{if} : \! o \multimap ! o \multimap o
\]

so that in the relational semantics of linear logic, setting \([o] = Q\),

\[
[i] \subseteq M_{\text{fin}}(Q) \times M_{\text{fin}}(Q) \times Q
\]

and

\[
([], [q_0, q_1], q_0) \in [\text{if}]
\]
Model-checking I

An alternating tree automaton over Σ, with set of states Q, of transition function δ, provides

\[
[\delta] = [\text{if}] \times [\text{data}] \times [\text{Nil}] \subseteq [o(\Sigma)]
\]

while a tree t over Σ gives, under Church encoding:

\[
[t] \subseteq [o(\Sigma) \rightarrow o] = M_{\text{fin}}([o(\Sigma)]) \times Q
\]

Relational composition:

\[
[t] \circ M_{\text{fin}}([\delta]) \subseteq Q
\]
An alternating tree automaton over Σ, with set of states Q, of transition function δ, provides

$$[[\delta]] = [[\text{if}]] \times [[\text{data}]] \times [[\text{Nil}]] \subseteq [[o(\Sigma)]]$$

while a tree t over Σ gives, under Church encoding:

$$[[t]] \subseteq [[o(\Sigma) \rightarrow o]] = M_{\text{fin}}([[o(\Sigma)]) \times Q$$

Relational composition:

$$[[t]] \circ M_{\text{fin}}([[\delta]]) \subseteq Q$$
Relational composition:

\[[t] \circ M_{\text{fin}}([\delta]) \subseteq Q \]

Proposition

\[[t] \circ M_{\text{fin}}([\delta]) \]

is the set of states \(q \) from which

\[A = \langle \Sigma, Q, \delta, q \rangle \]

accepts the tree \(t \).
Model-checking I

Rel is a denotational model:

\[t \rightarrow_{\beta} t' \implies [t] = [t'] \]

Corollary

For a term

\[t : o(\Sigma) \rightarrow o \]

(= normalizing to a finite \(\Sigma\)-labelled ranked tree),

\[[t] \circ M_{\text{fin}}([\delta]) \]

is the set of states \(q\) from which

\[\mathcal{A} = \langle \Sigma, Q, \delta, q \rangle \]

accepts the tree \(< t >\) generated by the normalization of \(t\).
Higher-order model-checking

We want to model-check

- **higher-order trees** ("non-regular, yet of finite representation"), as

\[
\begin{align*}
\text{if} & \quad \text{if} \\
\text{Nil} & \quad \text{data} \\
\text{Nil} & \quad \text{data} \\
\end{align*}
\]

and to account for **parity conditions**.
Higher-order recursion schemes

\[
G = \begin{cases}
 S &= L \text{ Nil} \\
 L \ x &= \text{if} \ x (L (\text{data} \ x))
\end{cases}
\]

is represented as the higher-order recursion scheme (HORS)
Higher-order recursion schemes

\[G = \begin{cases}
 S &= L \text{ Nil} \\
 L \, x &= \text{if } x (L \, (\text{data } x))
\end{cases} \]

Rewriting starts from the start symbol \(S \):

\[\begin{array}{c}
 S \\
 \rightarrow_G \\
 L \\
 \text{Nil}
\end{array} \]
Higher-order recursion schemes

\[G = \begin{cases}
S & = & L \text{ Nil} \\
L \times & = & \text{if } x (L \text{ (data } x \text{)})
\end{cases} \]
Higher-order recursion schemes

\[G = \begin{cases}
 S & = & L \text{ Nil} \\
 L \ x & = & \text{if} \ x \ (L \ (\text{data} \ x))
\end{cases} \]
Higher-order recursion schemes

\[G = \begin{cases} S & = & L \text{ Nil} \\ L \ x & = & \text{if} \ x \ (L \ (\text{data} \ x)) \end{cases} \]

\[\langle G \rangle \] is an infinite non-regular tree.

It is our model \(M \).
Higher-order recursion schemes

\[G = \begin{cases}
S & = \text{L Nil} \\
\text{L } x & = \text{if } x (\text{L } (\text{data } x))
\end{cases} \]

HORS can alternatively be seen as an extension of the simply-typed \(\lambda \)-terms we considered so far, with

simply-typed recursion operators \(Y_\sigma : (\sigma \rightarrow \sigma) \rightarrow \sigma \).

Here: \[G \leftrightarrow (Y_{\text{o} \rightarrow \text{o}} (\lambda \text{L.} \lambda x. \text{if } x (\text{L } (\text{data } x)))) \text{ Nil} \]

So we need to add fixpoints to the relational model.
Model-checking II

Rel has an inductive fixpoint operator (finite iteration). We obtain:

Theorem

For a λY-term

\[t : o(\Sigma) \rightarrow o \]

(= normalizing to an infinite \(\Sigma \)-labelled ranked tree),

\[[t] \circ M_{\text{fin}}([\delta]) \]

is the set of states \(q \) from which

\[\mathcal{A} = \langle \Sigma, Q, \delta, q \rangle \]

accepts the tree \(< t >\) generated by the coinductive normalization of \(t \)

during a finite execution
On finiteness

Why a finite execution?

Because constructors = free variables.

Infinite trees need infinite multisets.

So we define a new exponential

\[\mathcal{M}_{\text{count}}(A) \]

The resulting model has a coinductive operator (\(\approx \) infinite fixpoint unfolding).

(see G.-Melliès, Fossacs 2015)
Model-checking III

With the coinductive fixpoint of this infinitary model:

Theorem

For a λY-term

$$t : o(\Sigma) \rightarrow o$$

(= normalizing to an *infinite* Σ-labelled ranked tree),

$$[t] \circ M_{\text{fin}}([\delta])$$

is the set of states q from which

$$A = \langle \Sigma, Q, \delta, q \rangle$$

accepts the tree $< t >$ generated by the *coinductive normalization of* t

during a finite or infinite execution
Alternating parity tree automata

MSO allows to discriminate inductive from coinductive behaviour.

This allows to express properties as

“a given operation is executed infinitely often in some execution”

or

“after a read operation, a write eventually occurs”.
Alternating parity tree automata

Each state of an APT is attributed a color

$$\Omega(q) \in Col \subseteq \mathbb{N}$$

An infinite branch of a run-tree is winning iff the maximal color among the ones occurring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula φ:

$$\mathcal{A}_\varphi$$ has a winning run-tree over $\langle G \rangle$ iff $\langle G \rangle \models \varphi$
The coloring comonad

In the proceedings paper, we show that coloring is a modality. It defines a comonad in the semantics:

\[\Box A = Col \times A \]

which can be composed with \(\otimes \), giving an infinitary, colored model of linear logic in which

\[\delta(q_0, \text{if}) = (2, q_0) \land (2, q_1) \]

corresponds to

\[([], [(\Omega(q_0), q_0), (\Omega(q_1), q_1)], q_0) \in [[\text{if}]] \]

in the semantics.
In this setting, t has some type $\Box c_1 \sigma_1 \land \Box c_2 \sigma_2 \rightarrow \tau$.

The color labelling each occurrence is the maximal color leading to it in the normal form of t.

On applications, the comonad computes the maximal color (inductive treatment).
Model-checking IV

We define an inductive-coinductive fixpoint operator on denotations, which iterates finitely or infinitely depending on the current color. It is a Conway operator (Bloom-Esik).

Theorem

For a λY-term

$$t : o(\Sigma) \rightarrow o$$

(= normalizing to an infinite Σ-labelled ranked tree),

$$\llbracket t \rrbracket \circ M_{\text{fin}}(\llbracket \delta \rrbracket)$$

is the set of states q from which the alternating parity automaton

$$A = \langle \Sigma, Q, \delta, q \rangle$$

accepts the tree $\langle t \rangle$ generated by the coinductive normalization of t.
Ehrhard 2012: *ScottL* is the extensional collapse of *Rel*.

G.-Melliès, MFCS 2015: adaptation to *ScottL* of the theoretical approach of this work.

Corollary

The higher-order model-checking problem is decidable.

The resulting model is similar in the spirit to the one of Salvati and Walukiewicz, with subtle differences, notably on color handling and composition of morphisms.
Conclusion

- **Linear logic** reveals a very natural **duality** between terms and (alternating) automata.
- **Models** can be extended to handle additional conditions on automata (parity . . .)
- Relational semantics are **infinitary**, but their simplicity eases theoretical reasoning on problems.

In the proceedings:

- More on the **duality** aspects, and on the **extended relational semantics**.
- Discussion on the **modal nature** of coloring, and its relations with prior work of Kobayashi and Ong.
- Technical work is based on an equivalent **intersection type system**.

Thank you for your attention!
Conclusion

- **Linear logic** reveals a very natural **duality** between terms and (alternating) automata.
- **Models** can be extended to handle additional conditions on automata (parity...)
- Relational semantics are **infinitary**, but their simplicity eases theoretical reasoning on problems.

In the proceedings:

- More on the **duality** aspects, and on the **extended relational semantics**.
- Discussion on the **modal nature** of coloring, and its relations with prior work of Kobayashi and Ong.
- Technical work is based on an equivalent **intersection type system**.

Thank you for your attention!