Coinductive semantics of linear logic and higher-order model-checking

Charles Grellois — joint work with Paul-André Melliès

PPS & LIAFA — Université Paris 7 University of Dundee

Scottish Theorem Proving Dundee University — Oct 7, 2015

A well-known approach in verification: model-checking.

- ullet Construct a model ${\mathcal M}$ of a program
- ullet Specify a property arphi in an appropriate logic
- Make them interact: the result is whether

$$\mathcal{M} \models \varphi$$

When the model is a word, a tree. . . of actions: translate φ to an equivalent automaton:

$$\varphi \mapsto \mathcal{A}_{\varphi}$$

For higher-order programs with recursion, $\mathcal M$ is a higher-order tree.

Example:

modelled as

For higher-order programs with recursion, $\mathcal M$ is a higher-order tree.

Example:

```
 \begin{array}{lll} {\tt Main} & = & {\tt Listen \, Nil} \\ {\tt Listen \, } x & = & {\tt if \, } end \, \, {\tt then \, } x \, \, {\tt else \, \, Listen \, } \, ({\tt data \, } x) \\ \end{array}
```

modelled as

How to represent this tree finitely?

For higher-order programs with recursion, ${\cal M}$ is a higher-order tree

over which we run

an alternating parity tree automaton (APT) \mathcal{A}_{arphi}

corresponding to a

monadic second-order logic (MSO) formula φ .

(safety, liveness properties, etc)

For higher-order programs with recursion, ${\cal M}$ is a higher-order tree

over which we run

an alternating parity tree automaton (APT) \mathcal{A}_{arphi}

corresponding to a

monadic second-order logic (MSO) formula φ .

(safety, liveness properties, etc)

Can we decide whether a higher-order tree satisfies a MSO formula?

$$ext{Main} = ext{Listen Nil}$$
 $ext{Listen } x = ext{if } end ext{ then } x ext{ else Listen (data } x)$

is abstracted as

$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{if } x (L (\text{data } x)) \end{cases}$$

which produces (how ?) the higher-order tree of actions

5 / 27

$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{ if } x (L (\text{data } x)) \end{cases}$$

Rewriting starts from the start symbol S:

$$\mathcal{G} = \left\{ \begin{array}{lcl} \mathtt{S} & = & \mathtt{L} \ \mathtt{Nil} \\ \mathtt{L} \ x & = & \mathtt{if} \ x \left(\mathtt{L} \ (\mathtt{data} \ x \) \) \end{array} \right.$$

$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{ if } x (L (\text{data } x)) \end{cases}$$

$$\begin{array}{c} \text{if} \\ \text{Nil} \quad \text{if} \\ \\ \text{data} \quad L \\ \\ \\ \text{data} \\ \\ \text{data} \\ \\ \text{Nil} \\ \end{array}$$

$$\begin{array}{c} \text{Nil} \quad \text{data } L \\ \\ \\ \text{odata} \\ \\ \\ \text{odata} \\ \\ \\ \text{Nil} \\ \end{array}$$

$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{ if } x (L (\text{data } x)) \end{cases}$$

$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{if } x (L (\text{data } x)) \end{cases}$$

Finite representation of "higher-order regular" infinite trees: rewriting produces a tree $\langle \mathcal{G} \rangle$.

"Everything" is simply-typed, and

well-typed programs can't go too wrong:

we can detect productivity, and enforce it (replace divergence by outputing a distinguished symbol Ω in one step).

$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{ if } x (L (\text{data } x)) \end{cases}$$

HORS can alternatively be seen as simply-typed λ -terms with

free variables of order at most 1 (= tree constructors)

and

simply-typed recursion operators
$$Y_{\sigma}$$
: $(\sigma \to \sigma) \to \sigma$.

Here:
$$\mathcal{G} \iff (Y_{o \to o}(\lambda L.\lambda x.if x (L(data x))))$$
 Nil

We can adapt to HORS the fact that coinductive parallel head reduction computes the normal form of infinite λ -terms:

$$\frac{s \to_{\mathcal{G}w} s'}{s \ t \to_{\mathcal{G}w} s'}$$

$$\frac{s \to_{\mathcal{G}w} s'}{s \ t \to_{\mathcal{G}w} s' t}$$

$$F \to_{\mathcal{G}w} \mathcal{R}(F)$$

$$\frac{t \to_{\mathcal{G}w}^* a \ t_1 \cdots t_n \quad t_i \to_{\mathcal{G}}^{\infty} t_i' \ (\forall i)}{t \to_{\mathcal{G}}^{\infty} a \ t_1' \cdots t_n'}$$

This reduction computes $\langle \mathcal{G} \rangle$ whenever it exists (a decidable question).

This presentation allows coinductive reasoning on rewriting.

For a MSO formula φ ,

$$\langle \mathcal{G} \rangle \models \varphi$$

iff an equivalent APT \mathcal{A}_{φ} has a run over $\langle \mathcal{G} \rangle$.

APT = alternating tree automata (ATA) + parity condition.

ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically: $\delta(q_0, \text{if}) = (2, q_0) \wedge (2, q_1)$.

ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically: $\delta(q_0, \text{if}) = (2, q_0) \wedge (2, q_1)$.

ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically:
$$\delta(q_0, \text{if}) = (2, q_0) \wedge (2, q_1)$$
.

This infinite process produces a run-tree of \mathcal{A}_{φ} over $\langle \mathcal{G} \rangle$.

It is an infinite, unranked tree.

ATA vs. HORS

$$\frac{s \to_{\mathcal{G}_{W}} s'}{(\lambda x.s) t \to_{\mathcal{G}_{W}} s[x \leftarrow t]} \qquad \frac{s \to_{\mathcal{G}_{W}} s'}{s t \to_{\mathcal{G}_{W}} s' t}$$

$$\overline{F \to_{\mathcal{G}_{W}} \mathcal{R}(F)}$$

where the duplication "conforms to δ " (there is non-determinism).

Starting from $S: q_0$, this computes run-trees of an ATA \mathcal{A} over $\langle \mathcal{G} \rangle$.

We get closer to type theory...

Alternating tree automata and intersection types

A key remark (Kobayashi 2009):

$$\delta(q_0, \text{if}) = (2, q_0) \wedge (2, q_1)$$

can be seen as the intersection typing

if :
$$\emptyset o (q_0 \wedge q_1) o q_0$$

refining the simple typing

if :
$$o \rightarrow o \rightarrow o$$

(this talk is **NOT** about filter models!)

Alternating tree automata and intersection types

In a derivation typing if T_1 T_2 :

$$\mathsf{App} \xrightarrow{\begin{subarray}{c} \delta \\ \mathsf{App} \end{subarray}} \frac{ \frac{\emptyset \vdash \mathtt{if} : \emptyset \to (q_0 \land q_1) \to q_0}{ \emptyset \vdash \mathtt{if} \end{subarray}}{\begin{subarray}{c} 0 \\ \mathsf{App} \end{subarray}} \xrightarrow{\begin{subarray}{c} \emptyset \vdash \mathtt{if} \end{subarray}} \frac{\emptyset}{\end{subarray}} \xrightarrow{\begin{subarray}{c} 0 \\ \mathsf{F}_{21}, \end{subarray}} \xrightarrow{\begin{subarray}{c} 0 \\ \mathsf{F}_{22}, \end{subarray}} \xrightarrow{\begin{subarray}{c} 0 \\ \mathsf{F}_{22}, \end{subarray}} \xrightarrow{\begin{subarray}{c} 0 \\ \mathsf{F}_{22}, \end{subarray}} \xrightarrow{\begin{subarray}{c} 0 \\ \mathsf{F}_{21}, \end{subarray}}} \xrightarrow{\begin{subarray}{c} 0 \\ \mathsf{F}_{21}, \end{subarray}} \xrightarrow{\begin{subarray}{c} 0 \\ \mathsf{F}_{21}, \end{subarray}}} \xrightarrow{\begin{subarray}{c} 0 \\ \mathsf{F}_{21}, \end{subarray$$

Intersection types naturally lift to higher-order – and thus to \mathcal{G} , which finitely represents $\langle \mathcal{G} \rangle$.

Theorem (Kobayashi)

 $S: q_0 \vdash S: q_0$ iff the ATA \mathcal{A}_{φ} has a run-tree over $\langle \mathcal{G} \rangle$.

A type-system for verification: without parity conditions

Non-idempotent types + extension of $\to_{\mathcal{G},\mathcal{A}}^{\infty}$ to typing trees:

$$\begin{array}{cccc}
\pi \\
\vdots & & \pi_{i} \\
\hline
\Gamma, x : \bigwedge_{i} \tau_{i} \vdash s : \sigma & \vdots \\
\hline
\Gamma \vdash \lambda x. s : \bigwedge_{i} \tau_{i} \to \sigma & \Gamma_{i} \vdash t : \tau_{i} \\
\hline
\Gamma + \sum_{i} \Gamma_{i} \vdash (\lambda x. s) t : \sigma
\end{array}$$

rewrites to

$$\pi[x \leftarrow (\pi_i)_i]$$

$$\vdots$$

$$\Gamma + \sum_i \Gamma_i \vdash s[x \leftarrow t] : \sigma$$

Lifting of the alternating behavior to higher-order.

The head reduction of derivations computes prefixes of the run-tree:

$$\begin{array}{c} \pi_1 \\ \vdots \\ \hline S:q_0 \vdash S:q_0 \end{array}$$

The head reduction of derivations computes prefixes of the run-tree:

$$\begin{array}{c} \pi_1 \\ \vdots \\ \overline{S:q_0 \vdash S:q_0} \\ \\ \hline \frac{\pi_2}{L:(q_0 \land q_0 \land q_1) \rightarrow q_0 \vdash L:(q_0 \land q_0 \land q_1) \rightarrow q_0} \\ \hline L:(q_0 \land q_0 \land q_1) \rightarrow q_0 \vdash L:(q_0 \land q_0 \land q_1) \rightarrow q_0 \vdash L \, \text{Nil}:q_0 \vdash \text{Nil}:q_0 \\ \hline L:(q_0 \land q_0 \land q_1) \rightarrow q_0 \vdash L \, \text{Nil}:q_0 \end{array}$$

 $L: (q_0 \land q_0 \land q_1) \rightarrow q_0$ informs that its argument will be used three times in the proof-tree: twice with state q_0 , once with state q_1 .

Recall that x only occurs twice, but alternation makes additional duplications.

The head reduction of derivations computes prefixes of the run-tree:

$$\begin{array}{c} \pi_1 \\ \vdots \\ \hline S:q_0 \vdash S:q_0 \\ \hline \\ \hline L:(q_0 \land q_0 \land q_1) \rightarrow q_0 \vdash L:(q_0 \land q_0 \land q_1) \rightarrow q_0 \\ \hline \\ L:(q_0 \land q_0 \land q_1) \rightarrow q_0 \vdash L:q_0 \land q_0 \land q_1) \rightarrow q_0 \vdash L \text{ Nil}:q_0 \vdash \text{Nil}:q_1 \\ \hline \\ L:(q_0 \land q_0 \land q_1) \rightarrow q_0 \vdash L \text{ Nil}:q_0 \\ \hline \end{array}$$

$$\frac{\vdash \mathtt{if}: (q_0 \land q_1) \rightarrow q_1 \rightarrow q_0 \quad \vdash \mathtt{Nil}: q_0 \quad \vdash \mathtt{Nil}: q_1}{\vdash \mathtt{if} \ \mathtt{Nil}: q_1 \rightarrow q_0} \xrightarrow{\vdash \mathtt{Nil}: q_1} \underbrace{\frac{\vdots}{L: q_0 \rightarrow q_1 \vdash L: q_0 \rightarrow q_1}}_{L: q_0 \rightarrow q_1 \vdash L: q_0 \rightarrow q_1 \vdash L \ \mathtt{(data \ Nil)}: q_1} \xrightarrow{\vdash \mathtt{data} \ \mathtt{Nil}: q_0}_{\vdash \mathtt{Nil}: q_0 \rightarrow q_1 \vdash L \ \mathtt{(data \ Nil)}: q_0}$$

This time $L: q_0 \rightarrow q_1$ implies that one of the occurences of x will not be "visited" by the automaton.

The head reduction of derivations computes prefixes of the run-tree:

$$\begin{array}{c} \pi_1 \\ \vdots \\ \hline S:q_0 \vdash S:q_0 \end{array} \\ \hline \frac{\pi_2}{L:(q_0 \land q_0 \land q_1) \rightarrow q_0 \vdash L:(q_0 \land q_0 \land q_1) \rightarrow q_0} \\ \hline L:(q_0 \land q_0 \land q_1) \rightarrow q_0 \vdash L \text{ Nil}:q_0 \vdash \text{Nil}:q_0} \\ \hline L:(q_0 \land q_0 \land q_1) \rightarrow q_0 \vdash L \text{ Nil}:q_0} \end{array}$$

$$\frac{\vdash \text{if}: (q_0 \land q_1) \rightarrow q_1 \rightarrow q_0 \quad \vdash \text{Nil}: q_0 \quad \vdash \text{Nil}: q_1}{\vdash \text{if Nil}: q_1 \rightarrow q_0} \xrightarrow{\vdash \text{Nil}: q_1} \frac{\vdots}{L: q_0 \rightarrow q_1 \vdash L: q_0 \rightarrow q_1} \xrightarrow{\vdash \text{data}: q_1 \rightarrow q_0 \quad \vdash \text{Nil}: q_1}{\vdash \text{data Nil}: q_0} \xrightarrow{L: q_0 \rightarrow q_1 \quad \vdash L \text{ (data Nil)}: q_1} \xrightarrow{L: q_0 \rightarrow q_1 \quad \vdash L \text{ (data Nil)}: q_1}$$

 \to^{∞} run-tree of \mathcal{A} over $\langle \mathcal{G} \rangle$.

- 4 ロ ト 4 昼 ト 4 夏 ト - 夏 - 夕 Q ()

Theorem

 $S: q_0 \vdash S: q_0$ iff the ATA A_{ϕ} has a run-tree over $\langle \mathcal{G} \rangle$.

Proof: coinductive subject reduction/expansion + head reduction of derivations.

Parity conditions

MSO allows to discriminate inductive from coinductive behaviour.

This allows to express properties as

"a given operation is executed infinitely often in some execution"

or

"after a read operation, a write eventually occurs".

Each state of an APT is attributed a color

$$\Omega(q)\in \mathit{Col}\subseteq \mathbb{N}$$

An infinite branch of a run-tree is winning iff the maximal color among the ones occuring infinitely often along it is even.

Each state of an APT is attributed a color

$$\Omega(q) \in \mathit{Col} \subseteq \mathbb{N}$$

An infinite branch of a run-tree is winning iff the maximal color among the ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula φ :

$$\mathcal{A}_{\varphi}$$
 has a winning run-tree over $\langle \mathcal{G} \rangle$ iff $\langle \mathcal{G} \rangle \models \phi$

One more word on proof rewriting

where the C_i are the tree contexts obtained by normalizing each π_i .

 $C_0[C_1[], C_2[]]$ is a prefix of a run-tree of $\mathcal A$ over $\langle \mathcal G \rangle$.

One more word on proof rewriting

Theorem

In this quantitative setting, there is a correspondence between infinite branches of the typing of $\mathcal G$ and of the run-tree over $\langle \mathcal G \rangle$ obtained by normalization.

One more word on proof rewriting

The goal now: add information in π_i about the maximal color seen in C_i .

One extra color: ϵ for the case $C_i = []$.

We add coloring informations to intersection types:

$$\delta(q_0, \text{if}) = (2, q_0) \wedge (2, q_1)$$

now corresponds to

if :
$$\emptyset o \left(\square_{\Omega(q_0)} \, q_0 \wedge \square_{\Omega(q_1)} \, q_1 \right) o q_0$$

Application computes the "local" maximum of colors, and the fixpoint deals with the acceptance condition.

A type-system for verification (Grellois-Melliès 2014)

A type-system for verification (Grellois-Melliès 2014)

We now capture all MSO:

Theorem (G.-Melliès 2014)

 $S: q_0 \vdash S: q_0$ admits a winning typing derivation iff the alternating parity automaton \mathcal{A} has a winning run-tree over $\langle \mathcal{G} \rangle$.

We obtain decidability by collapsing to idempotent types.

Non-idempotency is very helpful for proofs, but leads to infinitary constructions.

A word on linear logic

Linear logic very naturally handles alternation via

$$A \Rightarrow B = !A \multimap B$$

and we can extend it with a coloring modality \square .

We design two kind of semantics, whose denotations are the refined types terms admit:

- an infinitary semantics, corresponding to non-idempotent colored types,
- and a finitary one, which is decidable.

Both models are natural extensions of well-known models of linear logic, with coloring and fixpoint.

For more: come at SPLS in two weeks!

A word on linear logic

Linear logic very naturally handles alternation via

$$A \Rightarrow B = !A \multimap B$$

and we can extend it with a coloring modality \square .

We design two kind of semantics, whose denotations are the refined types terms admit:

- an infinitary semantics, corresponding to non-idempotent colored types,
- and a finitary one, which is decidable.

Both models are natural extensions of well-known models of linear logic, with coloring and fixpoint.

For more: come at SPLS in two weeks!

Conclusion

- Sort of static analysis of infinitary properties.
- We lift to higher-order the behavior of APT.
- Coloring is a modality, stable by reduction in some sense, and can therefore be added to models and type systems.
- In idempotent type systems / finitary semantics, we obtain decidability of higher-order model-checking.

Thank you for your attention!

Conclusion

- Sort of static analysis of infinitary properties.
- We lift to higher-order the behavior of APT.
- Coloring is a modality, stable by reduction in some sense, and can therefore be added to models and type systems.
- In idempotent type systems / finitary semantics, we obtain decidability of higher-order model-checking.

Thank you for your attention!