Coinductive semantics of linear logic
and higher-order model-checking

Charles Grellois — joint work with Paul-André Melliés

PPS & LIAFA — Université Paris 7
University of Dundee

Scottish Theorem Proving
Dundee University — Oct 7, 2015

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015

1/ 27

Model-checking higher-order programs
A well-known approach in verification: model-checking.

@ Construct a model M of a program
@ Specify a property ¢ in an appropriate logic

@ Make them interact: the result is whether

M E

When the model is a word, a tree. .. of actions: translate ¢ to an
equivalent automaton:

o = A,

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015

2/ 27

Model-checking higher-order programs
For higher-order programs with recursion, M is a higher-order tree.

Example:

Main = Listen Nil
Listen x = if end then x else Listen (data x)

modelled as

if
/\
Nil if
/\
data if
\
Nil data
\
data
\
Nil

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 3/27

Model-checking higher-order programs
For higher-order programs with recursion, M is a higher-order tree.

Example:

Main = Listen Nil
Listen x = if end then x else Listen (data x)

modelled as

if
/\
Nil if
da(\if How to represent this tree finitely?
\
Nil data
\
data
\
Nil

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 3/27

Model-checking higher-order programs

For higher-order programs with recursion, M is a higher-order tree

over which we run

an alternating parity tree automaton (APT) A,

corresponding to a

monadic second-order logic (MSO) formula .

(safety, liveness properties, etc)

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 3/27

Model-checking higher-order programs

For higher-order programs with recursion, M is a higher-order tree

over which we run

an alternating parity tree automaton (APT) A,

corresponding to a

monadic second-order logic (MSO) formula .

(safety, liveness properties, etc)

Can we decide whether a higher-order tree satisfies a MSO formula?

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 3/27

Higher-order recursion schemes

Charles Grellois (PPS - LIAFA - Dundee) ema o Oct 7, 2015 4 /27

Higher-order recursion schemes

Main = Listen Nil
if end then x else Listen (data x)

Listen x

is abstracted as

g:

S = L Nil
L x = if x (L (data x))

which produces (how ?) the higher-order tree of actions

if
/\
Nl if
data
\
Nil
Semantics and model-checking Oct 7, 2015

Charles Grellois (PPS - LIAFA - Dundee)

5 /27

Higher-order recursion schemes

G - s = LNl
B L x = if x (L (data x))

Rewriting starts from the start symbol S:

Nil

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking

Higher-order recursion schemes

S = L Nil
g = ,
L x = if x (L (data x))
if
L Nil L
g |
Nil data
Nil

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking

Higher-order recursion schemes

S = L Nil
g = .
L x = if x (L (data x))
if
Nil if

it /N
A data L

Nil L | |
| N Nil data

data |
| data

Nil |
Nil

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 6 /27

Higher-order recursion schemes

g _ S = LNl
B L x = if x (L (data x))
if
TN
Nil if
/\
data if
G = A
Nil data :
|
data
|
Nil

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 6 /27

Higher-order recursion schemes

G - s = LNl
B L x = if x (L (data x))

Finite representation of “higher-order regular” infinite trees: rewriting
produces a tree (G).
“Everything” is simply-typed, and

well-typed programs can't go too wrong:

we can detect productivity, and enforce it (replace divergence by outputing
a distinguished symbol € in one step).

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 6 /27

Higher-order recursion schemes

G - s = LNl
B L x = if x (L (data x))

HORS can alternatively be seen as simply-typed A-terms with

free variables of order at most 1 (= tree constructors)

and
simply-typed recursion operators Y, : (0 = o) — 0.
Here: G «» (Yoo (AL.AXx.if x (L(data x)))) Nil
Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015

6 /27

Higher-order recursion schemes

We can adapt to HORS the fact that coinductive parallel head reduction
computes the normal form of infinite A-terms:

/

S —gw S
()\X.S) t —>gW S[X < t] st _>gw S, t
F —gw R(F)

t =G, At ty ti —g t (Vi)

1

t =g at -t

n

This reduction computes (G) whenever it exists (a decidable question).

This presentation allows coinductive reasoning on rewriting.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 7/27

Alternating tree automata

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 8 /27

Alternating parity tree automata

For a MSO formula ¢,

G F o

iff an equivalent APT A, has a run over (G).

APT = alternating tree automata (ATA) + parity condition.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015

9 /27

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: 0(qo,1f) = (2,90) A (2,q1).

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: 6(qo.if) = (2,90) A (2, q1).

if qo if qo
/\ /\
Nil if if qo if g1
data if data if data if
VAT VAR A
Nil data : Nil data : Nil data :
| | |
data data data
| | |
Nil Nil Nil

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 10 / 27

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: 6(qo, if) = (2,q0) A (2, q1)-
This infinite process produces a run-tree of A, over (G).

It is an infinite, unranked tree.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 10 / 27

ATA vs. HORS

/

S —gw S
(MAx.s)t —gw s[x <« t] st —gw St
F —gw R(F)
t =G, aticta gy —F4 gy

where the duplication “conforms to §” (there is non-determinism).
Starting from S : qo, this computes run-trees of an ATA A over (G).

We get closer to type theory. ..

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 11 /27

Alternating tree automata and intersection types

A key remark (Kobayashi 2009):
6(qo,1f) = (2,90) A (2, q1)
can be seen as the intersection typing
if : 0= (90N q1) — qo
refining the simple typing

if : o—>0—0

(this talk is NOT about filter models!)

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015

12 /27

Alternating tree automata and intersection types

In a derivation typing if T; T :

)
App

Q)I—if:(?)—>(q0/\q1)—>qo 0

O 3if T3 : (goAq1) = Qo M1 = T2t qo o To:qr

A
PP lo1, Too Fif T1 To 1 qo

Intersection types naturally lift to higher-order — and thus to G, which
finitely represents (G).

Theorem (Kobayashi)
S:aqgFS:q iff the ATA A, has a run-tree over (G). J

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 13 /27

A type-system for verification: without parity conditions

App

Axiom XI/\{i} 0k F x:0; 2k

{(i,qi) 11 <i<n1<j<k} satisfies da(q,a)

k Kn .
OFa: ALy gy = oo > A2y @nj 2> g0 —o0

AbFt: (b6 A ANO)—0 k=K ANFu:b ok
A+ A+ ... +A F tu:0: K

A, x o N 0
A)\X.t.(Nici 0i)) =0 k—w

Kk F ot 0K
)

NrN-R(F): 0k
F:0:rxkFF:0:k

fix

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 14 /27

An alternate proof

Non-idempotent types + extension of —& 4 to typing trees:

T
: i
Mx:N\7iFs:o :
N Mxs: A\, 1i—o M=t
F+> ik (Axs)t:o

rewrites to

7T[X <— (71','),']

F+> . Ti F s[x«t]:o
Lifting of the alternating behavior to higher-order.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015

15 / 27

An alternate proof

The head reduction of derivations computes prefixes of the run-tree:

Ut

fi :
> S:qgFS:q

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking

An alternate proof
The head reduction of derivations computes prefixes of the run-tree:

1
fix

S:qgFS:q

™2

: fix
L:(qAqAq)—q F L:(dgoAGoAq)—qo F Nil:qo F Nil: gy F Nil:q
L:(qoAqAq)—qo - LNil : qo

L : (goAgoAg1)— qo informs that its argument will be used three times
in the proof-tree: twice with state gg, once with state g;.

Recall that x only occurs twice, but alternation makes additional

duplications.
Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 16 / 27

An alternate proof

The head reduction of derivations computes prefixes of the run-tree:

1
fix

S:qgFS:q

™2

: fix
L:(qAqAq)—q F L:(dgoAGoAq)—qo F Nil:qo F Nil: gy F Nil:q
L:(qoAqAq)—qo - LNil : qo

3
: I data: g1 — qo F Nil : q1
Fif i (goAqi) > g —q b Nil: gy F Nil: qp L:gg—=qFL:q—>q I data Nil : qo
 if Nil : q1 — qo L:g—q F L (dataNil) : q1

L:qgo—qn F if Nil L (dataNil) : qo

This time L : gg — g1 implies that one of the occurences of x will not be
“visited” by the automaton.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 16 / 27

An alternate proof

The head reduction of derivations computes prefixes of the run-tree:

1
fix

S:qgFS:q

™2

: fix
L:(qAqAq)—q F L:(dgoAGoAq)—qo F Nil:qo F Nil: gy F Nil:q
L:(qoAqAq)—qo - LNil : qo

3
: I data: g1 — qo F Nil : q1
Fif i (goAqi) > g —q b Nil: gy F Nil: qp L:gg—=qFL:q—>q I data Nil : qo
 if Nil : q1 — qo L:g—q F L (dataNil) : q1

L:qgo—qn F if Nil L (dataNil) : qo

—° run-tree of A over (G).

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 16 / 27

An alternate proof

Theorem

S:qo F S : qoiffthe ATA Ay has a run-tree over (G).

Proof: coinductive subject reduction/expansion + head reduction of
derivations.

s (G) is
: — : <=> accepted
S:q F S:q 0+ (G): qo by A.

Charles Grellois (PPS - LIAFA - Dundee)

Semantics and model-checking Oct 7, 2015 17 / 27

Parity conditions

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking

Alternating parity tree automata

MSO allows to discriminate inductive from coinductive behaviour.
This allows to express properties as
“a given operation is executed infinitely often in some execution”

or

“after a read operation, a write eventually occurs”.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 19 /27

Alternating parity tree automata

Each state of an APT is attributed a color

Q(q) € Col CN

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

a
()
C3
C4

Cs

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 20 / 27

Alternating parity tree automata

Each state of an APT is attributed a color

Q(q) € Col CN

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ¢:

Ay has a winning run-tree over (G) iff (G) F ¢

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 20 / 27

One more word on proof rewriting

Y Y ¥ Y

0 CO

S:qgF S:q 0= (G): qo

where the C; are the tree contexts obtained by normalizing each ;.

Go[Gi], Go]] is a prefix of a run-tree of A over (G).

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 21 /27

One more word on proof rewriting

¢y
A~

Go
SZqu—SZqO @"<g

hid

C
) qo
Theorem

In this quantitative setting, there is a correspondence between infinite

branches of the typing of G and of the run-tree over (G) obtained by
normalization.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 22 /27

One more word on proof rewriting

hid

_>OO

NS

Co
52q0|—52q0 @"<g

C
) qo
The goal now: add information in 7r; about the maximal color seen in C;.

One extra color: ¢ for the case G; = [].

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 22 /27

Alternating parity tree automata

We add coloring informations to intersection types:

5(q0,1f) = (2,90) A (2, q1)

now corresponds to

if 1 0= (To(g) 90 A oggy) 91) — 90

Application computes the “local” maximum of colors, and the fixpoint
deals with the acceptance condition.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 23 /27

A type-system for verification (Grellois-Mellies 2014)

Axiom x:/\{i}DEH,- Tk B ox:10 kK

{(1,gi§) |1 <i<n1<j<k} satisfies da(q,a)

k kn
OFa: AL Uag) gy — oo = N2 Uag,) G —q0—=--—0—0

Abt:(On 60 Ao Alp, 0k) >0 = k> K Ajbu:b ok
A+ 0O+ oo+ 000 B tu: 00w

App

F-R(F):0: &k
F:0.0:kFF:0:k

fix

A, x o NiggUm b ik B t00 0w

A Ax.t: (Nig Om 0i) =0 k=

iel

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 24 /27

A type-system for verification (Grellois-Mellies 2014)

We now capture all MSO:

Theorem (G.-Mellies 2014)

S :qo S : qo admits a winning typing derivation iff the alternating
parity automaton A has a winning run-tree over (G).

We obtain decidability by collapsing to idempotent types.

Non-idempotency is very helpful for proofs, but leads to infinitary
constructions.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 25 /27

A word on linear logic
Linear logic very naturally handles alternation via

A=B = IA—oB

and we can extend it with a coloring modality (.

We design two kind of semantics, whose denotations are the refined types
terms admit:
@ an infinitary semantics, corresponding to non-idempotent colored
types,
@ and a finitary one, which is decidable.

Both models are natural extensions of well-known models of linear logic,
with coloring and fixpoint.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 26 / 27

A word on linear logic
Linear logic very naturally handles alternation via

A=B = IA—oB

and we can extend it with a coloring modality (.

We design two kind of semantics, whose denotations are the refined types
terms admit:
@ an infinitary semantics, corresponding to non-idempotent colored
types,
@ and a finitary one, which is decidable.

Both models are natural extensions of well-known models of linear logic,
with coloring and fixpoint.

For more: come at SPLS in two weeks!

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 26 / 27

Conclusion

@ Sort of static analysis of infinitary properties.
@ We lift to higher-order the behavior of APT.

@ Coloring is a modality, stable by reduction in some sense, and can
therefore be added to models and type systems.

@ In idempotent type systems / finitary semantics, we obtain
decidability of higher-order model-checking.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 27 / 27

Conclusion

@ Sort of static analysis of infinitary properties.
@ We lift to higher-order the behavior of APT.

@ Coloring is a modality, stable by reduction in some sense, and can
therefore be added to models and type systems.

@ In idempotent type systems / finitary semantics, we obtain
decidability of higher-order model-checking.

Thank you for your attention!

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Oct 7, 2015 27 / 27

