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Model-checking higher-order programs
A well-known approach in verification: model-checking.

@ Construct a model M of a program
@ Specify a property ¢ in an appropriate logic

@ Make them interact: the result is whether

M E

When the model is a word, a tree. .. of actions: translate ¢ to an
equivalent automaton:

o = A,
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Model-checking higher-order programs
For higher-order programs with recursion, M is a higher-order tree.

Example:

Main = Listen Nil
Listen x = if end then x else Listen (data x)

modelled as

if
/\
Nil if
/\
data if
\
Nil data
\
data
\
Nil
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Model-checking higher-order programs
For higher-order programs with recursion, M is a higher-order tree.

Example:

Main = Listen Nil
Listen x = if end then x else Listen (data x)

modelled as

if
/\
Nil if
da(\if How to represent this tree finitely?
\
Nil data
\
data
\
Nil
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Model-checking higher-order programs

For higher-order programs with recursion, M is a higher-order tree

over which we run

an alternating parity tree automaton (APT) A,

corresponding to a

monadic second-order logic (MSO) formula .

(safety, liveness properties, etc)
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Model-checking higher-order programs

For higher-order programs with recursion, M is a higher-order tree

over which we run

an alternating parity tree automaton (APT) A,

corresponding to a

monadic second-order logic (MSO) formula .

(safety, liveness properties, etc)

Can we decide whether a higher-order tree satisfies a MSO formula?
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Higher-order recursion schemes
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Higher-order recursion schemes

Main = Listen Nil
if end then x else Listen (data x)

Listen x

is abstracted as

g:

S = L Nil
L x = if x (L (data x))

which produces (how ?) the higher-order tree of actions

if
/\
Nl if
data
\
Nil
Semantics and model-checking Oct 7, 2015
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Higher-order recursion schemes

G - s = LNl
B L x = if x (L (data x))

Rewriting starts from the start symbol S:

Nil
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Higher-order recursion schemes

S = L Nil
g = ,
L x = if x (L (data x))
if
L Nil L
g |
Nil data
Nil
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Higher-order recursion schemes

S = L Nil
g = .
L x = if x (L (data x))
if
Nil if

it /N
A data L

Nil L | |
| N Nil data

data |
| data

Nil |
Nil
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Higher-order recursion schemes

g _ S = LNl
B L x = if x (L (data x))
if
TN
Nil if
/\
data if
G = A
Nil data :
|
data
|
Nil
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Higher-order recursion schemes

G - s = LNl
B L x = if x (L (data x))

Finite representation of “higher-order regular” infinite trees: rewriting
produces a tree (G).
“Everything” is simply-typed, and

well-typed programs can't go too wrong:

we can detect productivity, and enforce it (replace divergence by outputing
a distinguished symbol € in one step).
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Higher-order recursion schemes

G - s = LNl
B L x = if x (L (data x))

HORS can alternatively be seen as simply-typed A-terms with

free variables of order at most 1 (= tree constructors)

and
simply-typed recursion operators Y, : (0 = o) — 0.
Here: G  «» (Yoo (AL.AXx.if x (L(data x)))) Nil
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Higher-order recursion schemes

We can adapt to HORS the fact that coinductive parallel head reduction
computes the normal form of infinite A-terms:

/

S —gw S
()\X.S) t —>gW S[X < t] st _>gw S, t
F —gw R(F)

t =G, At ty ti —g t (Vi)

1

t =g at -t

n

This reduction computes (G) whenever it exists (a decidable question).

This presentation allows coinductive reasoning on rewriting.
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Alternating tree automata
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Alternating parity tree automata

For a MSO formula ¢,

G F o

iff an equivalent APT A, has a run over (G).

APT = alternating tree automata (ATA) + parity condition.
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Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: 0(qo,1f) = (2,90) A (2,q1).
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Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: 6(qo.if) = (2,90) A (2, q1).

if qo if qo
/\ /\
Nil if if qo if g1
data if data if data if
VAT VAR A
Nil data : Nil data : Nil data :
| | |
data data data
| | |
Nil Nil Nil
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Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: 6(qo, if) = (2,q0) A (2, q1)-
This infinite process produces a run-tree of A, over (G).

It is an infinite, unranked tree.
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ATA vs. HORS

/

S —gw S
(MAx.s)t —gw s[x <« t] st —gw St
F —gw R(F)
t =G, aticta gy —F4 gy

where the duplication “conforms to §” (there is non-determinism).
Starting from S : qo, this computes run-trees of an ATA A over (G).

We get closer to type theory. ..
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Alternating tree automata and intersection types

A key remark (Kobayashi 2009):
6(qo,1f) = (2,90) A (2, q1)
can be seen as the intersection typing
if : 0= (90N q1) — qo
refining the simple typing

if : o—>0—0

(this talk is NOT about filter models!)
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Alternating tree automata and intersection types

In a derivation typing if T; T :

)
App

Q)I—if:(?)—>(q0/\q1)—>qo 0

O 3if T3 : (goAq1) = Qo M1 = T2t qo o To:qr

A
PP lo1, Too Fif T1 To 1 qo

Intersection types naturally lift to higher-order — and thus to G, which
finitely represents (G).

Theorem (Kobayashi)
S:aqgFS:q iff the ATA A, has a run-tree over (G). J
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A type-system for verification: without parity conditions

App

Axiom XI/\{i} 0k F x:0; 2k

{(i,qi) 11 <i<n1<j<k} satisfies da(q,a)

k Kn .
OFa: ALy gy = oo > A2y @nj 2> g0 —o0

AbFt: (b6 A ANO)—0 k=K ANFu:b ok
A+ A+ ... +A F tu:0: K

A, x o N 0
A )\X.t.( Nici 0i)) =0 k—w

Kk F ot 0K
)

NrN-R(F): 0k
F:0:rxkFF:0:k

fix
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An alternate proof

Non-idempotent types + extension of —& 4 to typing trees:

T
: i
Mx:N\7iFs:o :
N Mxs: A\, 1i—o M=t
F+> ik (Axs)t:o

rewrites to

7T[X <— (71','),']

F+> . Ti F s[x«t]:o
Lifting of the alternating behavior to higher-order.
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An alternate proof

The head reduction of derivations computes prefixes of the run-tree:

Ut

fi :
> S:qgFS:q
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An alternate proof
The head reduction of derivations computes prefixes of the run-tree:

1
fix

S:qgFS:q

™2

: fix
L:(qAqAq)—q F L:(dgoAGoAq)—qo F Nil:qo F Nil: gy F Nil:q
L:(qoAqAq)—qo - LNil : qo

L : (goAgoAg1)— qo informs that its argument will be used three times
in the proof-tree: twice with state gg, once with state g;.

Recall that x only occurs twice, but alternation makes additional

duplications.
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An alternate proof

The head reduction of derivations computes prefixes of the run-tree:

1
fix

S:qgFS:q

™2

: fix
L:(qAqAq)—q F L:(dgoAGoAq)—qo F Nil:qo F Nil: gy F Nil:q
L:(qoAqAq)—qo - LNil : qo

3
: I data: g1 — qo F Nil : q1
Fif i (goAqi) > g —q b Nil: gy F Nil: qp L:gg—=qFL:q—>q I data Nil : qo
 if Nil : q1 — qo L:g—q F L (dataNil) : q1

L:qgo—qn F if Nil L (dataNil) : qo

This time L : gg — g1 implies that one of the occurences of x will not be
“visited” by the automaton.
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An alternate proof

The head reduction of derivations computes prefixes of the run-tree:

1
fix

S:qgFS:q

™2

: fix
L:(qAqAq)—q F L:(dgoAGoAq)—qo F Nil:qo F Nil: gy F Nil:q
L:(qoAqAq)—qo - LNil : qo

3
: I data: g1 — qo F Nil : q1
Fif i (goAqi) > g —q b Nil: gy F Nil: qp L:gg—=qFL:q—>q I data Nil : qo
 if Nil : q1 — qo L:g—q F L (dataNil) : q1

L:qgo—qn F if Nil L (dataNil) : qo

—° run-tree of A over (G).
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An alternate proof

Theorem

S:qo F S : qoiffthe ATA Ay has a run-tree over (G).

Proof: coinductive subject reduction/expansion + head reduction of
derivations.

s (G) is
: — : <=> accepted
S:q F S:q 0+ (G): qo by A.
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Parity conditions
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Alternating parity tree automata

MSO allows to discriminate inductive from coinductive behaviour.
This allows to express properties as
“a given operation is executed infinitely often in some execution”

or

“after a read operation, a write eventually occurs”.
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Alternating parity tree automata

Each state of an APT is attributed a color

Q(q) € Col CN

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

a
()
C3
C4

Cs
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Alternating parity tree automata

Each state of an APT is attributed a color

Q(q) € Col CN

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ¢:

Ay has a winning run-tree over (G) iff (G) F ¢
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One more word on proof rewriting

Y Y ¥ Y

0 CO

S:qgF S:q 0= (G): qo

where the C; are the tree contexts obtained by normalizing each ;.

Go[Gi], Go]] is a prefix of a run-tree of A over (G).
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One more word on proof rewriting

¢y
A~

Go
SZqu—SZqO @"<g

hid

C
) qo
Theorem

In this quantitative setting, there is a correspondence between infinite

branches of the typing of G and of the run-tree over (G) obtained by
normalization.
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One more word on proof rewriting

hid

_>OO

NS

Co
52q0|—52q0 @"<g

C
) qo
The goal now: add information in 7r; about the maximal color seen in C;.

One extra color: ¢ for the case G; = [].
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Alternating parity tree automata

We add coloring informations to intersection types:

5(q0,1f) = (2,90) A (2, q1)

now corresponds to

if 1 0= (To(g) 90 A oggy) 91) — 90

Application computes the “local” maximum of colors, and the fixpoint
deals with the acceptance condition.
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A type-system for verification (Grellois-Mellies 2014)

Axiom x:/\{i}DEH,- Tk B ox:10 kK

{(1,gi§) |1 <i<n1<j<k} satisfies da(q,a)

k kn
OFa: AL Uag) gy — oo = N2 Uag,) G —q0—=--—0—0

Abt:(On 60 Ao Alp, 0k) >0 = k> K Ajbu:b ok
A+ 0O+ oo+ 000 B tu: 00w

App

F-R(F):0: &k
F:0.0:kFF:0:k

fix

A, x o NiggUm b ik B t00 0w

A Ax.t: (Nig Om 0i) =0 k=

iel
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A type-system for verification (Grellois-Mellies 2014)

We now capture all MSO:

Theorem (G.-Mellies 2014)

S :qo S : qo admits a winning typing derivation iff the alternating
parity automaton A has a winning run-tree over (G).

We obtain decidability by collapsing to idempotent types.

Non-idempotency is very helpful for proofs, but leads to infinitary
constructions.
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A word on linear logic
Linear logic very naturally handles alternation via

A=B = IA—oB

and we can extend it with a coloring modality (.

We design two kind of semantics, whose denotations are the refined types
terms admit:
@ an infinitary semantics, corresponding to non-idempotent colored
types,
@ and a finitary one, which is decidable.

Both models are natural extensions of well-known models of linear logic,
with coloring and fixpoint.
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A word on linear logic
Linear logic very naturally handles alternation via

A=B = IA—oB

and we can extend it with a coloring modality (.

We design two kind of semantics, whose denotations are the refined types
terms admit:
@ an infinitary semantics, corresponding to non-idempotent colored
types,
@ and a finitary one, which is decidable.

Both models are natural extensions of well-known models of linear logic,
with coloring and fixpoint.

For more: come at SPLS in two weeks!
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Conclusion

@ Sort of static analysis of infinitary properties.
@ We lift to higher-order the behavior of APT.

@ Coloring is a modality, stable by reduction in some sense, and can
therefore be added to models and type systems.

@ In idempotent type systems / finitary semantics, we obtain
decidability of higher-order model-checking.
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Conclusion

@ Sort of static analysis of infinitary properties.
@ We lift to higher-order the behavior of APT.

@ Coloring is a modality, stable by reduction in some sense, and can
therefore be added to models and type systems.

@ In idempotent type systems / finitary semantics, we obtain
decidability of higher-order model-checking.

Thank you for your attention!
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