Probabilistic Termination by Monadic Affine Sized Typing

Ugo Dal Lago <u>Charles Grellois</u>

FOCUS Team - INRIA & University of Bologna

ESOP 2017

Motivations

- Probabilistic programming languages are more and more pervasive in computer science: modeling uncertainty, robotics, cryptography, machine learning, Al...
- Quantitative notion of termination: almost-sure termination (AST)
- AST has been studied for imperative programs in the last years. . .
- ... but what about the probabilistic functional languages?

We introduce a monadic, affine sized type system sound for AST.

Simply-typed λ -calculus is strongly normalizing (SN).

No longer true with the letrec construction...

Sized types: a decidable extension of the simple type system ensuring SN for λ -terms with letrec.

See notably:

- Hughes-Pareto-Sabry 1996, Proving the correctness of reactive systems using sized types,
- Barthe-Frade-Giménez-Pinto-Uustalu 2004, Type-based termination of recursive definitions.

Sizes:
$$\mathfrak{s}, \mathfrak{r} ::= \mathfrak{i} \mid \infty \mid \widehat{\mathfrak{s}}$$

+ size comparison underlying subtyping. Notably $\widehat{\infty} \equiv \infty$.

Idea: k successors = at most k constructors.

- Nat^î is 0,
- Nat \hat{i} is 0 or S 0,
- . . .
- \bullet Nat^∞ is any natural number. Often denoted simply $\mathsf{Nat}.$

The same for lists, . . .

Sizes:
$$\mathfrak{s}, \mathfrak{r} ::= \mathfrak{i} \mid \infty \mid \widehat{\mathfrak{s}}$$

+ size comparison underlying subtyping. Notably $\widehat{\infty} \equiv \infty$.

Fixpoint rule:

$$\frac{\Gamma, f \,:\, \mathsf{Nat}^{\mathfrak{i}} \to \sigma \vdash M \,:\, \mathsf{Nat}^{\widehat{\mathfrak{i}}} \to \sigma[\mathfrak{i}/\widehat{\mathfrak{i}}] \qquad \mathfrak{i} \ \mathsf{pos} \ \sigma}{\Gamma \vdash \mathsf{letrec} \ f \ = \ M \,:\, \mathsf{Nat}^{\mathfrak{s}} \to \sigma[\mathfrak{i}/\mathfrak{s}]}$$

"To define the action of f on size n+1, we only call recursively f on size at most n"

Sizes:
$$\mathfrak{s}, \mathfrak{r} ::= \mathfrak{i} \mid \infty \mid \widehat{\mathfrak{s}}$$

+ size comparison underlying subtyping. Notably $\widehat{\infty} \equiv \infty$.

Fixpoint rule:

$$\frac{\Gamma, f : \mathsf{Nat}^{\mathfrak{i}} \to \sigma \vdash M : \mathsf{Nat}^{\widehat{\mathfrak{i}}} \to \sigma[\mathfrak{i}/\widehat{\mathfrak{i}}] \quad \mathfrak{i} \ \mathsf{pos} \ \sigma}{\Gamma \vdash \mathsf{letrec} \ f \ = \ M : \mathsf{Nat}^{\mathfrak{s}} \to \sigma[\mathfrak{i}/\mathfrak{s}]}$$

Typable \implies SN. Proof using reducibility candidates.

Decidable type inference.

Sized Types: Example in the Deterministic Case

From Barthe et al. (op. cit.):

```
\begin{array}{ccc} \text{plus} \equiv (\text{letrec} & \textit{plus}_{:\text{Nat}' \rightarrow \text{Nat} \rightarrow \text{Nat}} = \\ & \lambda x_{:\text{Nat}^{\widehat{i}}}. \ \lambda y_{:\text{Nat}}. \ \text{case} \ x \ \text{of} \ \{\text{o} \Rightarrow y \\ & | \ \text{s} \Rightarrow \lambda x'_{:\text{Nat}'}. \ \text{s} \ \underbrace{(\textit{plus} \ x' \ y)}_{:\text{Nat}} \\ \} \\ ) : & \text{Nat}^s \rightarrow \text{Nat} \rightarrow \text{Nat} \end{array}
```

The case rule ensures that the size of x' is lesser than the one of x. Size decreases during recursive calls \Rightarrow SN.

A Probabilistic λ -calculus

$$M, N, \dots$$
 ::= $V \mid V V \mid \text{let } x = M \text{ in } N \mid M \oplus_p N$
 $\mid \text{case } V \text{ of } \{S \to W \mid 0 \to Z\}$

$$V, W, Z, \dots$$
 ::= $x \mid 0 \mid S V \mid \lambda x.M \mid \text{letrec } f = V$

- Formulation equivalent to λ -calculus with \oplus_p , but constrained for technical reasons (A-normal form)
- Restriction to base type Nat for simplicity, but can be extended to general inductive datatypes (as in sized types)

let
$$x = V$$
 in $M \to_{V} \left\{ (M[x/V])^{1} \right\}$

$$(\lambda x.M) V \to_{V} \left\{ (M[x/V])^{1} \right\}$$

$$\left(| \text{letrec } f = V \right) \left(c \overrightarrow{W} \right) \rightarrow_{V} \left\{ \left(V[f/\left(| \text{letrec } f = V \right)] \left(c \overrightarrow{W} \right) \right)^{1} \right\}$$

(Call-by-value calculus)

case S V of
$$\{S \to W \mid 0 \to Z\} \to_{V} \{(W \ V)^{1}\}$$

case 0 of
$$\{S \to W \mid 0 \to Z\} \to_{\nu} \{(Z)^1\}$$

$$\frac{M \oplus_{p} N \to_{v} \left\{ M^{p}, N^{1-p} \right\}}{M \to_{v} \left\{ L_{i}^{p_{i}} \mid i \in I \right\}}$$

$$\text{let } x = M \text{ in } N \to_{v} \left\{ (\text{let } x = L_{i} \text{ in } N)^{p_{i}} \mid i \in I \right\}$$

$$\mathcal{D} \stackrel{VD}{=} \left\{ M_j^{p_j} \mid j \in J \right\} + \mathcal{D}_V \qquad \forall j \in J, \quad M_j \quad \to_{\nu} \quad \mathcal{E}_j \\
\mathcal{D} \quad \to_{\nu} \quad \left(\sum_{j \in J} p_j \cdot \mathcal{E}_j \right) + \mathcal{D}_V$$

For \mathcal{D} a distribution of terms:

$$\llbracket \mathscr{D} \rrbracket = \sup_{n \in \mathbb{N}} \left(\left\{ \mathscr{E}_n \mid \mathscr{D} \Rrightarrow_{\mathsf{v}}^n \mathscr{E}_n \right\} \right)$$

where \Longrightarrow_{V}^{n} is \rightarrow_{V}^{n} followed by projection on values.

We let
$$\llbracket M \rrbracket = \llbracket \{ M^1 \} \rrbracket$$
.

$$M$$
 is AST iff $\sum \llbracket M \rrbracket = 1$.

Random Walks as Probabilistic Terms

Biased random walk:

$$M_{bias} = \left(\mathsf{letrec} \ f \ = \ \lambda x.\mathsf{case} \ x \ \mathsf{of} \ \left\{ \ \mathsf{S} o \lambda y.f(y) \oplus_{rac{2}{3}} \left(f(\mathsf{S} \, \mathsf{S} \, y) \right) \right) \ \ \middle| \ \ 0 o 0 \
ight\} \right) \ \underline{n}$$

• Unbiased random walk:

$$M_{unb} = \left(\text{letrec } f = \lambda x. \text{case } x \text{ of } \left\{ S \rightarrow \lambda y. f(y) \oplus_{\frac{1}{2}} \left(f(S S y) \right) \right) \mid 0 \rightarrow 0 \right\} \right) \, \underline{n}$$

$$\sum \llbracket M_{bias} \rrbracket = \sum \llbracket M_{unb} \rrbracket = 1$$

Capture this in a sized type system?

Another Term

We also want to capture terms as:

$$M_{nat} = \left(\text{letrec } f = \lambda x.x \oplus_{\frac{1}{2}} S (f x) \right) 0$$

of semantics

$$\llbracket M_{nat} \rrbracket = \{ (0)^{\frac{1}{2}}, (S \ 0)^{\frac{1}{4}}, (S \ S \ 0)^{\frac{1}{8}}, \ldots \}$$

summing to 1.

(This is the geometric distribution.)

Beyond SN Terms, Towards Distribution Types

First idea: extend the sized type system with:

Choice
$$\frac{\Gamma \vdash M : \sigma \quad \Gamma \vdash N : \sigma}{\Gamma \vdash M \oplus_{p} N : \sigma}$$

and "unify" types of M and N by subtyping.

Kind of product interpretation of \oplus : we can't capture more than SN...

Beyond SN Terms, Towards Distribution Types

First idea: extend the sized type system with:

and "unify" types of M and N by subtyping.

We get at best

$$f \; : \; \mathsf{Nat}^{\widehat{\widehat{\mathfrak{i}}}} \to \mathsf{Nat}^{\infty} \; \vdash \; \lambda y. f(y) \oplus_{\frac{1}{2}} \left(f(\mathsf{S} \, \mathsf{S} \, y) \right)) \; \; : \; \; \mathsf{Nat}^{\widehat{\mathfrak{i}}} \to \mathsf{Nat}^{\infty}$$

and can't use a variation of the letrec rule on that.

Beyond SN Terms, Towards Distribution Types

We will use distribution types, built as follows:

Now

Designing the Fixpoint Rule

$$\begin{array}{c} f \ : \ \left\{ \left(\mathsf{Nat}^{\mathsf{i}} \to \mathsf{Nat}^{\infty}\right)^{\frac{1}{2}}, \ \left(\mathsf{Nat}^{\widehat{\mathsf{i}}} \to \mathsf{Nat}^{\infty}\right)^{\frac{1}{2}} \right\} \\ & \vdash \\ \lambda y. f(y) \oplus_{\frac{1}{2}} \left(f(\mathsf{SS}\, y) \right) \right) \ : \ \ \mathsf{Nat}^{\widehat{\mathsf{i}}} \to \mathsf{Nat}^{\infty} \end{array}$$

induces a random walk on \mathbb{N} :

- on n+1, move to n with probability $\frac{1}{2}$, on n+2 with probability $\frac{1}{2}$,
- on 0, loop.

The type system ensures that there is no recursive call from size 0.

Random walk AST (= reaches 0 with proba 1) \Rightarrow termination.

Designing the Fixpoint Rule

$$\{ | \Gamma | \} = \mathsf{Nat}$$

$$\mathsf{i} \notin \Gamma \text{ and } \mathsf{i} \text{ positive in } \nu$$

$$\left\{ \left(\mathsf{Nat}^{\mathfrak{s}_j} \to \nu[\mathsf{i}/\mathfrak{s}_j] \right)^{p_j} \ \middle| \ j \in J \right\} \mathsf{induces an AST sized walk}$$

$$\mathsf{LetRec} \qquad \frac{\Gamma | f : \left\{ \left(\mathsf{Nat}^{\mathfrak{s}_j} \to \nu[\mathsf{i}/\mathfrak{s}_j] \right)^{p_j} \ \middle| \ j \in J \right\} \vdash V : \, \mathsf{Nat}^{\widehat{\mathsf{i}}} \to \nu[\mathsf{i}/\widehat{\mathsf{i}}]}{\Gamma | \emptyset \vdash \mathsf{letrec} \ f = V : \, \mathsf{Nat}^{\mathfrak{r}} \to \nu[\mathsf{i}/\mathfrak{r}]}$$

Sized walk: AST is checked by an external PTIME procedure.

Generalized Random Walks and the Necessity of Affinity

A crucial feature: our type system is affine.

Higher-order symbols occur at most once. Consider:

$$M_{naff} = \text{letrec } f = \lambda x. \text{case } x \text{ of } \left\{ S \rightarrow \lambda y. f(y) \oplus_{\frac{2}{3}} \left(f(SSy); f(SSy) \right) \mid 0 \rightarrow 0 \right\}$$

The induced sized walk is AST.

Generalized Random Walks and the Necessity of Affinity

Tree of recursive calls, starting from 1:

Leftmost edges have probability $\frac{2}{3}$; rightmost ones $\frac{1}{3}$.

This random process is not AST.

Problem: modelisation by sized walk only makes sense for affine programs.

Key Property I: Subject Reduction

Main idea: reduction of

$$\emptyset \, | \, \emptyset \vdash 0 \oplus 0 \, : \, \left\{ \, \left(\mathsf{Nat}^{\widehat{\mathfrak{s}}} \right)^{\frac{1}{2}}, \left(\mathsf{Nat}^{\widehat{\widehat{\mathfrak{r}}}} \right)^{\frac{1}{2}} \, \right\}$$

is to

$$\left\{\,\left(0\,:\,\mathsf{Nat}^{\widehat{\mathfrak{s}}}\right)^{\frac{1}{2}},\left(0\,:\,\mathsf{Nat}^{\widehat{\widehat{\mathfrak{r}}}}\right)^{\frac{1}{2}}\,\right\}$$

- $\textbf{ Same expectation type: } \tfrac{1}{2} \cdot \mathsf{Nat}^{\widehat{\mathfrak{s}}} + \tfrac{1}{2} \cdot \mathsf{Nat}^{\widehat{\widehat{\mathfrak{r}}}}$
- ② Splitting of $[\![0\oplus 0]\!]$ in a typed representation \to notion of pseudo-representation

Key Property I: Subject Reduction

Theorem

Let $M \in \Lambda_{\oplus}$ be such that $\emptyset \mid \emptyset \vdash M : \mu$. Then there exists a closed typed distribution $\left\{ (W_j : \sigma_j)^{p'_j} \mid j \in J \right\}$ such that

- $\mathbb{E}\left((W_j:\sigma_j)^{p'_j}\right) \preccurlyeq \mu$,
- and that $\left[(W_j)^{p'_j} \mid j \in J \right]$ is a pseudo-representation of $\llbracket M \rrbracket$.

By the soundness theorem of next slide, this inequality is in fact an equality.

Key Property II: Typing Soundness

Theorem (Typing soundness)

If $\Gamma \mid \Theta \vdash M : \mu$, then M is AST.

Proof by reducibility, using set of candidates parametrized by probabilities.

Usual reducibility proof:

M closed of type $\sigma \Rightarrow M \in Red_{\sigma} \Rightarrow M$ is SN

In our setting:

Usual reducibility proof:

$$M$$
 closed of type $\sigma \Rightarrow M \in Red_{\sigma} \Rightarrow M$ is SN

In our setting:

$$M \in \mathit{TRed}^p_\sigma \ \Rightarrow \ \sum \llbracket M \rrbracket \ge p$$

Usual reducibility proof:

M closed of type $\sigma \Rightarrow M \in Red_{\sigma} \Rightarrow M$ is SN

In our setting:

$$\textit{M}$$
 closed of type $\sigma \ \Rightarrow \ \forall \textit{p} < 1, \ \textit{M} \in \textit{TRed}_{\sigma}^{\textit{p}} \ \Rightarrow \ \forall \textit{p} < 1, \ \sum \llbracket \textit{M} \rrbracket \geq \textit{p}$

p increases with the number of fixpoint unfoldings we do, and we prove that M is in $TRed_{\sigma}^{p}$ iff its n-unfolding is.

Usual reducibility proof:

$$M$$
 closed of type $\sigma \Rightarrow M \in Red_{\sigma} \Rightarrow M$ is SN

In our setting:

$$M$$
 closed of type $\sigma \ \Rightarrow \ M \in TRed^1_\sigma \ \Rightarrow \ \sum \llbracket M \rrbracket = 1$ i.e. M AST

by a continuity lemma.

Conclusion

Main features of the type system:

- Affine type system with distributions of types
- Sized walks induced by the letrec rule and solved by an external PTIME procedure
- Subject reduction + soundness for AST

Next steps:

- type inference (decidable again??)
- extensions with refinement types, non-affine terms

Thank you for your attention!

Conclusion

Main features of the type system:

- Affine type system with distributions of types
- Sized walks induced by the letrec rule and solved by an external PTIME procedure
- Subject reduction + soundness for AST

Next steps:

- type inference (decidable again??)
- extensions with refinement types, non-affine terms

Thank you for your attention!

Reducibility, the Probabilistic Case - Open Terms

Reducibility, the Probabilistic Case - Open Terms

In our setting: if $\Gamma \mid y : \{\tau_i^{p_j}\}_{j \in J} \vdash M : \mu$ then

- $\forall (q_i)_i \in [0,1]^n, \ \ \forall \overrightarrow{V} \in \prod_{i=1}^n \ \mathsf{VRed}_{\sigma_i}^{q_i},$
- ullet $\forall \left(q_j'\right)_j \in [0,1]^J, \ \ \forall W \in igcap_{j \in J} \ \mathsf{VRed}_{ au_j}^{q_j'},$
- we have $M[\overrightarrow{x}, y/\overrightarrow{V}, W] \in \mathsf{TRed}^{\alpha}_{\mu}$

where
$$\alpha = (\prod_{i=1}^n q_i) \left(\left(\sum_{j \in J} p_j q_j' \right) + 1 - \left(\sum_{j \in J} p_j \right) \right)$$
.