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Abstract

This article presents two different ways of model-checking higher-order
recursion schemes, both relying on game semantics. A given recursion
scheme is translated to another, which is its computational extent, in the
sense that β-reduction paths - called traversals - in the new generated tree are
isomorphic to branches of the former tree. Then, the two approaches differ
on their way of simulating traversals: one uses APTs to produce verification
parity games, whereas the other uses n-CPDAs and builds verification par-
ity games on their transition graphs. Both approaches prove that the modal
µ-calculus model-checking of an order-n recursion scheme is n-EXPTIME
complete.

Introduction
With the development of Computer Science, the need for reliable computing sys-
tems is growing; but the complexity of programs and systems keeps increasing.
Verifying programs is crucial; and several approaches were found so far. Model-
checking, introduced in the early 80s, emphasizes on the verification of a given
model of a program, instead of trying to verify the whole program which may
be millions lines long. The problem is then, given a model of a program which
sketches its behaviour, and a logical formula expressing a property the program
should have (like, not entering in a bad state), to check whether the formula holds
on the model.
Modal µ-calculus was introduced in [8] (1982); it is a temporal logic convenient
for the verification over branching structures, like trees, and adapted to the char-
acterization of recursive properties thanks to fixpoint operators.
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Higher-order recursion schemes were introduced in the 70s, and provide a conve-
nient way to model functional programs generating trees, with recursion but with-
out side effects. Interest for these schemes has been raising in the recent years,
and Ong gave in [9] a way to transform such schemes so that their dynamics, from
syntactic, become semantic, being given then by β-reductions. Model-checking of
a modal µ-calculus may then be performed on the transformed scheme, by follow-
ing call-by-name β-reduction paths called traversals, which compute the branches
of the tree generated by the original scheme. Ong introduced two different ways
of simulating these traversals for verificational purpose, in [9] and [5], the first
one using alternating parity automata, and the second one using higher-order col-
lapsible pushdown automata. These two approaches are introduced in this article,
with some additionnal information on modal µ-calculus.
This work was made during an internship in Oxford; my contribution is only about
explaining things and adding extended or new examples. No new result is pre-
sented in this article.
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1 Modeling programs: Recursion Schemes

1.1 Higher-Order Recursion Schemes
The first step of the verification of a given program is to define a proper model
of it. Higher-order recursion schemes provide a way to model programs gener-
ating trees, with the expressivity of a simply-typed λ-calculus with recursion and
uninterpreted constants2, and we shall see that they also are a proper modelling
structure for verification. Before defining these recursion schemes, we first need
to introduce their type system.

Types for the recursion schemes. In the following we just consider a ground
type o, and applicative types based on it. Thus every type will have a decompo-
sition A1 → · · · → An → o; n is the arity of the type, and its order is defined
by:

• order(o) = 0

• order(A1 → · · · → An → o) = 1 + max(order(A1), · · · , order(An))

Higher-Order recursion schemes. A recursion scheme is some kind of “gram-
mar with parameters” which generates a tree, the formal definition being:

Definition 1. A recursion scheme is a 4-tuple G =< Σ,N ,R, S >, with Σ a ranked
alphabet of terminals, N a finite set of non-terminals3, S ∈ N a start symbol of
type o, and R a finite set of rewrite rules, one for each non-terminal F : A1 →
· · · → An → o, of the shape Fξ1 · · · ξn → e where the ξi : Ai and e : o.

2Of order at most 1; the notion will be defined soon. These constants will be the nodes of the
generated tree.

3In the following, we use upper-case letters for the non-terminals, and lower-case ones for the
terminals.



The order of a recursion scheme is then defined to be the maximal order of
its non-terminals4. A recursion scheme G defines a term and thus a tree, denoted
[[G]], obtained by unfolding the rewrite rules of G ad infinitum. The generated
tree may be infinite5. Intuitively, the order of a recursion scheme describes the
complexity of the generated tree, order-0 recursion schemes generating regular
trees.

1.2 Giving a computational structure to the recursion schemes:
the RHS transform

Such a recursion scheme does not have a convenient structure for our purpose;
here we describe the RHS transform which gives an equivalent recursion scheme
which basically is the computational extent of the former: the new recursion
scheme will be some kind of λ-calculus program computing the branches of the
tree.

Definition 2. The RHS transform of a recursion scheme G is a four-step rewriting
of the rules of G, leading to a new recursion scheme Ḡ:

1. η-expand every subterm which occurs in operand position, even if it has
ground type.

2. Insert apply-symbols @ such that every application De1 · · · en becomes
@De1 · · · en

3. Curry the rewrite rules: Fξ1 · · · ξn → e becomes F → λξ1 · · · ξn.e (even
when n = 0 where this amounts to add a λ. on the right side).

4. α-rename the bound variables.

The new recursion scheme then generates the computation tree denoted λ(G),
which is the η-long Böhm tree of [[G]]. This tree is enriched with a notion of
direction: to each child of a given node is assigned a direction, the leftmost child
being given the direction 0 if the node is labelled by an @ and 1 else; the direction
is increased by one for the child immediatly right of the leftmost one, and so one.

4Intuitively, the order of a type describes the maximal depth of imbricated beta-reductions it
needs to compute. For example, to compute an order-2 term, one will have to β-reduce once at
least one of its arguments; the second β-reduction being the one of the term itself, that is performed
by the rewriting system.

5Equivalently, one can consider the graph generated by a recursion scheme, obtained by con-
sidering first a forest whose trees correspond to the applicative terms on the right of the rules, and
where links to a given non-terminal are added as edges to the root of the corresponding tree. The
unfolding of this (finite) graph is then the (potentialy infinite) generated tree.



This way, the code of an application is stored in direction 0 and the code of the ith

argument in direction i. We additionally define Dir( f ) to be the set of directions
of a given symbol f .

Local structure of λ(G). The RHS transform gives a very convenient structure
to λ(G): locally, the tree is of one of the following forms:

• An applicative node of arity n has n + 1 children:

@

λη̄n· · ·λη̄1λξ1· · · ξn

where the leftmost node, in direction 0, will be the root of the application’s
code, where ξi describes the ith argument of the application, and where the
child in direction i ≥ 1 corresponds to the code of the ith argument of the
application (so, in a call-by-name strategy, encountering ξi in the applicative
code leads to computing the branch in direction i). η̄i then describes the list
of (potential: the node may just be labelled λ if ξi has order 0) arguments of
ξi, which may have themselves to be accessed during the β-reduction of ξi

if ξi has order at least 2.

• A node labelled by a variable φ of arity n has n children, in directions 1 to
n:

φ

λξn· · ·λξ1

where the ith direction contains the code of the ith argument of φ.

• A Σ-labelled node of arity n has n children:

f

λ· · ·λ

If n = 0, the node is terminal.

Example 1 (From G to λ(G)). We consider the following simple order-2 recursion
scheme G:



S → H a
H z→ F (g z)

F φ→ φ (φ (F h))

Applying the RHS transform, one obtains the following scheme:

S → λ.@ H (λ.a)
H → λz.@F(λy.g(λ.z)(λ.y))

F → λφ.φ(λ.φ(λ.@ F (λx.h(λ.x))))

One should remark that the new recursion scheme is order-0 thanks to the curryfi-
cation, has an explicit marking of the applications with the use of the @ symbol -
but paths in λ(G) have no relation with paths in [[G]]. The notion of traversal will
give such a relation.
Figure 1 gives the two trees corresponding to G and its transform.

1.3 Preservation by RHS transform: the Path-Traversal corre-
spondence

Traversals: informal ideas. The idea of the RHS transform is to turn a recur-
sion scheme into some λ-calculus term-generating scheme, such that the compu-
tation by β-reduction of the generated term computes the original tree, when one
erases the non-Σ symbols.
Thus, a path in the tree [[G]] will correspond to a computational sequence in the
tree λ(G); we call this sequence a traversal. The idea of a traversal is that it starts
from the root of λ(G), then goes down. When a @ symbol is reached, the 0-child
is visited first: remember that it is the code of the application. Then when the
value of the ith argument is required, the traversal jumps to the ith child of the ap-
plication node, and computes the value of this argument, then jumps back to what
follows in the applicative code6. When a Σ-symbol of arity non-zero is reached,
the environment chooses a direction to compute: thus there will be one (maximal)
traversal per branch of [[G]].

Traversals: formal definition. We need some more definitions first. The first
one, defining the enabling relation, and justified sequences, will give us control
over the β-jumps in the tree. The second one, defining the view of justified se-
quence, has a game semantics reason of being, which will be explained in the
next paragraph. Traversals will then be defined as some justified sequences, con-
strained by their view.

6Thus the traversals follow a call-by-name reduction strategy: given that we do not modify the
tree but only walk on it, it is the only solution.
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Figure 1: [[G]] and [[λ(G)]]

Definition 3 (Enabling relation, justified sequences). The enabling relation is de-
fined on the nodes of the computation tree:

• Every λ node but the root is i-enabled by its parent node, where i is its
direction

• Every variable node ξi is i-enabled by its binder λξ̄ (where ξi is the ith ele-
ment of the list ξ̄)

A justified sequence is then be a sequence of nodes alternating λ and non-λ nodes,



such that if a node i-enabled by another appears, then its enabler appears before
in the sequence.

We represent the enabling relation by justification links, as in the following
example over λ(G):

λ @ λz @ λφ φ λy g λ y λ
0 0 1

1
1

1

Definition 4 (View of a justified sequence). The view dte of a justified sequence t
is defined by induction as follows:

• dλe = λ

• dtλξ̄ . . . y
i

e = dteλξ̄ . . . y
i

• dtλξ̄ne = dtλξ̄en

where in the third rule a link is added to the view if there was one from n to a
previous element appearing in the view.

Definition 5 (Traversal). A traversal is a justified sequence generated incremen-
tally by the five following rules:

1. The justified sequence made of the root node of λ(G) is a traversal.

2. If t @ is a traversal, then t @ λφ̄
0

is one too.

3. If t f (with f ∈ Σ) is a traversal then, for every 1 ≤ f ≤ arity( f ), t f λ
i

is a
traversal too.

4. If t n λξ̄ · · · ξi

i

is a traversal, t n λξ̄ · · · ξi λη̄
i

i

is one too7.

5. If tλξ̄ is a traversal, and dtλξ̄ne is a path in λ(G), then tλξ̄n is a traversal too.

7Here we see the interest of the enabling relation: together with this rule, it ensures that, in
order to compute an ith argument, the traversal jumps to the code of it and nowhere else.



Most rules meet the informal explanation that was given at the beginning of this
subsection; the only thing which needs more explanations is how a traversal jumps
back to the right node after computing an argument. That is the purpose of the fifth
rule, and of the notion of view: the view hides the internal computations that are
made, typically here the computation of an argument’s value. Then, if n is the
son of the node φ where the traversal jumped from, the view of the traversal will
end with · · · φn, and by construction the whole view will be the path from the root
node to n in λ(G).

Example 2 (Traversals of λ(G)). We consider again the scheme of the previous
example, and compute some traversals over it.
First, we have to start with the root node; and then, we walk down on the tree,
always taking the direction 0 after visiting an applicative node. Thus we obtain

the following traversal: λ @ λz @ λφ φ
0 0 1

, which is just a path in λ(G). Now
that we arrived on φ, we need to compute its value, that is the first (and only)
argument of the application that enables its binder (the second @ we have met so
far). So, the traversal grows jumping to the son in direction 1 of this second @,

and continues going down in this subtree, leading to λ @ λz @ λφ φ λy g
0 0 1

1

.
g is a Σ-symbol: here the two directions may be taken to build a traversal8.

• If we choose to visit direction 1, the traversal trivially grows to:

λ @ λz @ λφ φ λy g λ z
0 0 1

1

1

1

z is a variable node, corresponding to the first and only argument of the first
application we have met, so the traversal has to jump to the son in direction
1 of the first @, growing then to:

λ @ λz @ λφ φ λy g λ z λ a
0 0 1

1

1

1

1

8It corresponds to computing the branches of [[G]], choosing one of the two possible directions
after visiting g.



which is a maximal traversal9.

• If we choose to visit direction 2, the traversal trivially grows to:

λ @ λz @ λφ φ λy g λ y
0 0 1

1

2

1

Then the traversal has to grow to:

λ @ λz @ λφ φ λy g λ y λ
0 0 1

1

2

11

where this λ is the son of the φ node which the traversal jumped from,
because the only rule applying here is the 5th one, and that this justified se-
quence’s view is a path in λ(G): thus it is a traversal. Going down again
adds a new occurence of φ to the traversal, and it jumps again to the same
subtree; if after visiting g the first direction is chosen, the maximal traversal
jumps again to the subtree with an occurence of a a10, leading to:

λ @ λz @ λφ φ λy g λ y λ φ λy g λ z λ a
0 0 1

1

2

11
11

1

11

else the traversal jumps back to a new application node, . . . 11.

The reader may refer to [4, Appendix A] for an order 3 example, where a β-jump
is sometimes performed inside a β-jump.

9One may remark that this traversal visited g, then a, which is one of the maximal branches of
[[G]].

10So the maximal traversal will be finite and correspond to the path gga in [[G]]
11The maximal traversal in this direction is infinite and corresponds to the only infinite path in

[[G]]: gghh · · ·



Traversals and games. The tree λ(G) was built such that λ and non-λ nodes
alternate12; this gives λ(G) a structure of arena, with λ nodes belonging to the
Opponent and non-λ nodes belonging to the Proponent. The traversals may now
be constructed as plays13 over this arena, where the only non-deterministic oper-
ation happens on the Σ nodes: on this node, the proponent (that is, the program)
asks the opponent (the environment) which is the next node to visit, and the op-
ponent answers by picking one of its λ-nodes, that is by choosing the direction
in [[G]] to compute. The succession of such choices will build a branch of [[G]] if
one erases the computation symbols added to build λ(G): this is the path-traversal
correspondence.

The Path-Traversal correspondence. Using (innocent14) game semantics, the
following holds:

Theorem 1. There is a 1-to-1 correspondence between maximal paths in the tree
[[G]] and maximal traversals in the tree λ(G); and the Σ-symbols on the traversal
are exactly the Σ-symbols on the corresponding path of [[G]].

This justifies the former affirmation that traversals compute [[G]]: each max-
imal traversal computes a branch of the original tree if we remove every non-Σ
symbol added for the computation purposes, as we have seen on the example
while computing the three maximal traversals of λ(G).

Remark 1. • In the example we computed traversals on an order-2 recursion
scheme. The order of a recursion scheme is intuitively the maximal depth
of jumps in the tree plus one; so in an order-3 recursion scheme, traversals
sometimes jump a first time to simulate the computation of an argument,
and a second one to perform a β-reduction needed by the computation of
this argument; it may have to perform several such depth-2 jumps sequen-
tially. An example of an order-3 recursion scheme, of it RHS-transform, its
computation tree, its traversals, . . . is given in [4, Appendix A]. If you refer
to this, you may remark that at order 3, the infinite direction is not necessary
the leftmost one, even if it may seem in the examples we have seen so far.

12This is the reason why even ground-type subterms were η-expanded, and even the rules with
no arguments were curryed during the RHS transform.

13The definition of a traversal gives a strategy whose plays are the traversals. Note that this
strategy only uses its view to determinate what move to play next: such a strategy is said to be
innocent; and innocent strategies represent programs without side effects.

14That is, game semantics where the strategies are only based on the view: when two moves
have a similar view, the next move will be the same in both case. This basically means that there
are no side effects.



• Now that we have this computational intuition of the RHS transform of a
recursion scheme, one should understand that the α-renaming performed
during the transform ensures that, in a local context, which is respected by
the traversal’s jumps, a given variable symbol represents one unique, well-
defined value, even if in the whole tree infinitely many occurences of the
symbol corresponding to different values in a computation may appear.

2 Modal µ-calculus, verification games, and traver-
sals

2.1 Modal µ-calculus

An informal definition. Modal µ-calculus is some kind of temporal logic; it es-
sentially is an enrichment of usual Boolean formulae with two fixpoint operators
µ (smallest fixpoint operator) and ν (greatest fixpoint operator), and two modal-
ities � (which requires that every immediate15 successor of the current temporal
position satisfies the subformula it applies to) and � (which just requires one of
the immediate successors to satisfy the subformula it applies to)16.
For our purpose of performing model-checking over the value tree of a recursion
scheme, the branching structure will be the tree, whose edges are considered di-
rected "from the root to the leaves": therefore, �φ is true iff φ holds at some son
of the current node, and �φ is true iff φ holds at every son of the current node.
The two fixpoints µ and ν can be interpreted as two recursion operators; µ allow-
ing only finite recursion, and ν allowing infinite recursion.17

Example 3 (Modal µ-calculus formulae over a tree). Here we present several
modal µ-calculus formulae, of increasing complexity:

• µZ.(�Z) is true iff the tree is finite: the checking of this formula starts at the
root of the tree, and the formula iterates itself (with a µ operaror, prohibiting
infinite recursion) on the children of the root, · · ·

15Contrary to what happens with "Always" and "Eventually" in CTL, these modalities only
affect the immediate successors. But, as we shall see soon, the combination of these modalities
with fixpoints, which provide recursion, allows to encode these two CTL modalities in the modal
µ-calculus.

16These ideas should be enough for what follows; for "real" definitions, one may refer to [2], or
to [11] which provides a good intuition - but uses a slightly different model of APT than ours.

17The idea is that the smallest fixpoint of a function f over a lattice can be obtained by iterating
f on ⊥. The process necessarily ends; up to a little refinment, within a finite number of iterations.
See [2], sections 3.1 and 3.2, for more explanations - in the following, these informal explanations
should suffice.



• µZ.(a ∨ �Z) is true iff some branch of the tree has a a label on it: either
there is an "a" at the current node, either �Z holds, that is µZ.(a∨ �Z) holds
at one children (at least) of the current node; the process then iterates on
this node - note that the use of µ implies that it stops at some point, where
necessarily a labels the node. If a ν operator had been used, the modelled
property would have been "there is an a on a branch of the tree or an infinite
branch".

• What if we want to characterize the existence of the infinite branch with an
infinity of h we had in the value tree of Example 1 ? We have to model the
property that there is a path which, after a finite number of nodes, reaches a
node where starts one branch, whose labelling word is hhh · · · This branch
property can be expressed by ψ = νY.(h ∧ �Y), which means that h labels
the current node, and that ψ itself holds at one child of the current node: by
infinite iteration, this formula holds at a node iff it is the start of a branch
labelled hhh · · · To reach this branch, we use the formula φ = µZ.(ψ∨�X),
which expresses that, within a finite number of steps, some path leads to a
node where ψ holds: thus we designed in φ the property we wanted to.

Remark 2 (CTL is embedded in the modal µ-calculus.). To translate a CTL for-
mula into a modal µ-calculus one, it should be clear that the difficulty is just to
translate the two operators ∀[φUψ] and ∃[φUψ]. Remember that the first one
means that for every infinite path starting from the current node, φ holds until,
within a finite number of steps, one reaches a node where ψ holds. The second
one means that there exists a finite path starting from the current node in which φ
holds until some point where ψ does.
In the first case, we just want to iterate finitely the formula ψ ∨ �φ, leading to the
µ-calculus formula µZ.(ψ ∨ (�φ ∧ Z)): intuitively, if this formula holds at some
node, then on every explored direction, either ψ holds, and the exploration stops,
or φ holds at every son of the node, and the iteration starts the exploration at every
son18. The iteration being finite by the use of µ, we have the expected semantics.
In the second case, the corresponding formula is µZ.(ψ ∨ (�φ ∧ Z)) for the same
reasons.

2.2 Modal µ-calculus model-checking on trees using alternat-
ing parity automata

Alternating parity automata. Alternating parity automata are a generalization
of non-deterministic tree automata. We shall see that their behaviour is perfect for
checking whether a given modal µ-calculus formula holds at the root of a given

18See [2], section 4.1, for a formal translation.



tree.

Definition 6 (Alternating Parity Automaton). An alternating parity automaton
(APT) is a tuple < Σ,Q, δ, q0,Ω > where:

• Σ is the (ranked) alphabet, whose elements label the nodes of the input trees

• Q is the finite set of states

• δ is the transition function, which maps to each (q, f ) ∈ Q × Σ a positive
Boolean formula whose atoms are couples from Dir( f ) × Q

• q0 is the initial state

• Ω : Q→ N is the priority function

The generalization of non-determinism comes from the fact that instead of
having two possible transitions δ(q, f ) = (q1, · · · , qn) and δ(q, f ) = (q′1, · · · , q′n)
from some configuration (q, f ), in an APT one will have:

δ(q, f ) = ((1, q1) ∧ · · · ∧ (n, qn)) ∨ ((1, q′1) ∧ · · · ∧ (n, q′n)).

Definition 7 (Run-tree of an APT). A run-tree of an APT A over a Σ-labelled
ranked tree t is an unraked tree r such that

• ε ∈ Dom(r) and r(ε) = (ε, q0)

• For every β ∈ Dom(r) with r(β) = (α, q) and δ(q, t(α)) = θ, there is a set
S satisfying θ, and for each (a, q′) ∈ S , there is a direction b on r such that
r(βb) = (αa, q′).

Notice that there is no one-to-one correspondence beetween the nodes of r and
t: a node of t could be represented several times (or none !) in r, with different
labelling states: the loss of the ranked structure of t gives r the possibility to repre-
sent several different non-deterministic executions of a classical non-deterministic
tree automaton at the same time.
One can thus understand a run-tree of an APT over a given tree as a new tree
derivated from the previous one by possibly duplicating subtrees, and labelling
every node of this new tree with a state, and the direction that corresponded to it
in the former tree.



Example 4 (Run-tree of an APT). We consider an APT on the ranked alphabet
{g : 2 ; h : 1 ; a : 0}, with two states {1, 2}, and where the priority of a state is its
name. The initial state is 1. We define δ as follows:

• δ(1, g) = (1, 1) ∨ (2, 1)

• δ(1, h) = (1, 1) ∨ (1, 2)

• δ(2, h) = (1, 2)

and where δ is ⊥ on other couples of Q×Σ. Then the following trees are run-trees
over [[G]] for G defined in Example 119:

g (1)

g (1)

h (1)

h (2)

h (2)

...

g (1)

g (1)

h (1)

h (1)

h (2)

h (2)

...

g (1)

g (1)

h (1)

h (2)

h (2)

h (2)

h (2)

...

h (1)

h (2)

h (2)

h (2)

· · ·

All these run-trees are accepting: the only infinitely often occuring parity is 2, and
it is even.
Note that [[G]] itself is not a run-tree of this APT; it could be one if we added the
transition δ(1, a) = >. Without it, [[G]] can be labelled using δ, but δ does not
hold at the a-labelled nodes, thus it is not a proper run-tree.

A run-tree r of an APTA over a tree t will then be considered as accepting iff
it satisfies the classical parity condition, that is if on every infinite path over it, the
smallest priority20 met infinitely often is even.

19We represent the symbol of the original tree and the state labelling on the drawing.
20Recall that each node is labelled by a direction and a state; and every state has a priority given

by Ω, which gives the node a priority.



APT and the modal µ-calculus model-checking over a tree. Emerson and
Jutla proved in [3] the following result:

Theorem 2. Checking whether a given modal µ-calculus formula holds at the
root of a tree is equivalent to deciding whether there exists an accepting run-tree
of some APT B over this tree.

Emerson and Jutla’s definition of APT being quite far from ours, one may refer
to the section 2.3 of [11] for a formal translation. Here we focus only on the main
ideas, and give some examples. The idea is that the purely Boolean subformulae
of the formula φ to check at the root can be dealt with by the APT transition func-
tion directly21; the modalities can be easily dealt with too, �ψ corresponding to a
transition with a OR over all the children of the current node, mentioning every
possible direction, and with state affectations corresponding to verifying whether
ψ holds on these children nodes. Similarly, �ψ can be simulated with a AND over
all directions, with a state labelling corresponding to checking ψ on these chil-
dren nodes. Fixpoints are simulated using the parity function: the simulation with
the APT corresponds to "unfolding" the formula, performing the recursion on the
branches of the tree; the µ operators correspond to odd parity states and the ν ones
to even parity states; and the outermost fixpoint operator has the smaller parity,
the outermost ν operator being given the smallest parity.
Remember that the expected behaviour of a µ operator is to provide a finite recur-
sion; if it does not, then the run-tree the model-checking APT labels has infinitely
many states with the odd priority corresponding to this µ operator, and no infinite
occurence of a smaller priority: this means that an operator which is less nested
than this µ one occurs infinitely, and this contradicts the fact that this µ lead to an
infinite recursion. So, the parity acceptance condition ensures that the only (pos-
sibly) infinitely recursive operators are the ν ones. Putting everything together,
there is an accepting run-tree of the model-checking APT over a tree iff φ holds at
its root.

Example 5 (Properties and APTs). Now we consider [[G]] from Example 1, φ
from Example 3, and the APT from Example 4. Remember that φ = µZ.(ψ∨�X),
where ψ = νY.(h ∧ �Y). The APT from Example 4 then checks whether φ holds
at the root of the tree it runs on, in the sense that there is an accepting run-tree
of this APT over some tree iff φ holds at the root of this tree, that is, if there is a
path on this tree which, after a finite number of nodes, enters an infinite branch
labelled hhh · · · .
Actually, the state 1 stands for the checking of φ on a node - that is why it is initial

21Remember that the transition function of the APT gives Boolean positive formulae: so a
negation will have to be replaced by a OR over every other possibility of choice over Dir( f ) × Q.



- and the state 2 stands for the checking of ψ. When the current node is labelled
g, we explore one (or two) of the children, thanks to

δ(1, g) = (1, 1) ∨ (2, 1)22, in order to determine whether φ holds at one of them. It
can only happen a finite number of times, else 1 is the smallest infinite priority and
the run-tree is not accepting. On a, δ = ⊥ so that finite branches does not appear
in a run-tree (if they did, we may have a finite accepting run-tree, which would
not satisfy φ). When a h is reached, we either label its children 1 or 2 (or both,
by duplicating the subtree - recall Example 4). We have to consider labelling
1, because we may encounter a h but then a g, · · · : the first h we meet is not
necessarily the beginning of the infinite branch we want to find. Now it should
be clear that this APT performs model-checking of φ on trees; the existence of
accepting run-trees of it over [[G]], as we have seen in Example 4, proves that [[G]]
effectively has an infinite branch labelled only with h, reachable in a finite (just in
2, actually) number of steps.

Traversal trees. Therefore, the model-checking of a modal µ-calculus property
over [[G]] is equivalent to the problem of the existence of an accepting run-tree
of some alternating parity tree automata B, modelling the property to check over
[[G]]. Recall that the path-traversal correspondence gives a one-to-one correspon-
dence beetween maximal paths on [[G]] and maximal traversals over λ(G): this
extends to a one-to-one correspondence beetween run-trees of B over [[G]] and
traversal-trees of B over λ(G), where a traversal-tree corresponding to some run-
tree is a tree whose maximal branches are exactly the maximal traversals over the
run-tree23.

Example 6 (Run-trees and traversal-trees). Let’s consider G and λ(G) from Ex-
ample 1, and an APT C on the ranked alphabet {g : 2 ; h : 1 ; a : 0}, with two
states {0, 1}, and where the priority of a state is its name. The initial state is 1. We
define δ as follows:

• δ(1, g) = (1, 1) ∨ (2, 1)

• δ(1, a) = >
• δ(0, a) = >

and obtain the following traversal-tree over λ(G):

22Recall that the first value is the simulated direction, and the second one the labelling state.
23Note that, a traversal-tree being labelled by an alphabet wider than just Σ, the state labelling

is performed by the APT on the children of Σ-nodes, and the value is then propagated along the
traversal to the next Σ symbol.
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1Figure 2: [[λ(G)]] and the corresponding traversal-tree for C



Thus, our model-checking problem is equivalent to the problem of the exis-
tence of an accepting traversal-tree over B.

2.3 Informal extension of the process to the µ-modal calculus
model-checking over graphs

From a given graph, as mentionned in Footnote 4, one can obtain a tree by un-
ravelling: starting from a given root node of the graph, we explore each path on
it incrementally; when a cycle is found, we replace the last visited edge by an
edge to a copy of the subtree rooted at the node the removed edge was pointing to.
Proceeding this way gives a tree which is equivalent to the graph in the sense that
the set of paths over the graph and the tree obtained by unravelling are the same.
Figure 10 in Section 4.1 gives an illustration of a graph and the tree obtained by
unravelling it.
Then, the problem of deciding whether a given modal µ-calculus formula holds at
a distinguished node of a graph is equivalent to the problem of deciding whether
this formula stands at the root of the tree obtained by unravelling the graph start-
ing at the distinguished node; and we have just seen how to solve this problem.

3 Simulating Traversals

3.1 On "model-checking run-trees“: the APT approach
Now that our model-checking task over [[G]] has been reduced to deciding whether
there exists an accepting traversal-tree of B over λ(G), we build an APT C whose
accepting run-trees are accepting traversal-trees of B.

Building from B a traversal-tree recognizing APT: an informal description.
In order to simulate traversal-trees over the computation tree λ(G) with an APT,
we have to simulate properly the jumps in the tree, as an APT is essentially a
top-down device. Thus, just labelling the run-trees with states of B does not suf-
fice, and some more information needs to be added: this is the raison d’être of
variable profiles and of environments, which are introduced formally in the next
paragraph.
The idea of C is that when it arrives on an @ node, the automaton guesses the
possible behaviours after computing the arguments (that is, the node a traversal
jumps back to, the minimal priority encountered during the computation of the
argument, and the state the computation of the argument ends with), and checks
them when proceeding the non-0 directions (if there is a bad guess, the automaton



blocks), while the applicative code (in direction 0) uses the guessed values. Thus,
in the following situation where φ is an order two variable, the expected behaviour
of C is expected to be:

...

@

· · ·λψ̄, q1

...

ψ j, q2

· · ·λφ̄

...

φi, q1

λ· · ·λ, q2· · ·λ

j

0 i

• When C reaches the @ node, it guesses an environment, which is a set of
"descriptions" like "computing the ith argument may return to the jth son of
φ in state q1, and the computation’s least encountered priority is m1 - or it
may return to this jth son in state q2 and with minimal encountered priority
m2"

• On the branches describing arguments, the automaton checks that the envi-
ronment it guessed at the @ node describes exactly all possibilities, and no
more.

• On the applicative branch, when a variable is encountered, its sons are la-
belled with the states corresponding to the ones we guessed possibly en-
countered during the computation of the corresponding argument.

Variable profiles, active profiles, environments. Let us make all this a bit more
formal. We need some definitions first:

Definition 8 (Variable profile). A variable profile for B is a tuple (φ, q,m, c),
where φ is the variable it describes (of type A1 → · · · → An → o), q is a
state of B, m is a priority of B, and c is a set of variable profiles for variables
typed Ai, called its interface.



Definition 9 (Active profile). An active profile for the APTB is a tuple (φ, q,m, c)b

which is a variable profile enriched with a boolean b which is false if the priority
m was not encountered at the current step of the computation, and true if it was
the lowest priority encountered so far - if a lower priority was found, then the
automaton will be designed to block during the update of the boolean.

Definition 10 (Environment). An environment ρ for the APT B over λ(G) is a set
of active profiles describing variables occuring as labels in λ(G).

A variable profile is then describing some variable φ, giving the state q that
is being simulated when φ is met by the automaton simulating the traversal, and
the priority m that was the lowest encountered beetween the root and the last
occurence of φ it meets24, and an interface which describes the variable profiles
that will label the children nodes of the φ-labelled nodes. An active profile adds a
boolean whose use is to control that m is actually the smallest priority encountered
so far. An environment gives such information for every occuring variable; it may
have several profiles for a variable if its computation has several possible ways of
returning when following a traversal.

Description of the behaviour of the traversal-simulating APT C. As we re-
marked previously, we need to label the run-trees of C with more than just states
of B to make it simulate properly traversals: thus, states of C will be either of the
shape q ρ or q ρ θ, where q is a B-state, ρ is an environment for B over λ(G), and θ
is a distinguished variable profile. The starting state is then q0 ∅, and the priority
of a state is the B-one of q if there is no distinguished variable profile, and the one
contained in the distinguished variable profile else. For the transition function, we
just give a case-by-case description of the expected behaviour of C:

On applicative nodes, labelled q ρ : Remember the local structure of a compu-
tation tree: @ has n + 1 children, where n is the number of parameters of
the application; the "code" of the application is in direction 0, starting with
λφ1 · · · φn, and each φi describes the ith argument of the current application,
so that its call-by-name β-reduction can be simulated by jumping to the
child in direction i of @ when φi is reached in the applicative code which
is in direction 0. First of all, C guesses a set c = {θ j = (ξi j , ql j ,m j, c j)}
of active profiles describing the variables in φ̄25, and labels direction 0 with
q c. For the other directions, recall that ρ corresponds to information on
variables that were declared before; for each direction i ≥ 1, the automaton

24That is, the last occurence of φ bound by the very same binder node.
25A given variable may be represented several times, corresponding to the different state la-

bellings that may occur during a run of B.



guesses which variables from ρ will be used, and labels the child in direc-
tion i j with state ql j , environment the union of the profiles guessed useful
from ρ, with booleans updated to true if the minimal priority they describe
equals m j (and blocking if the maximal priority of some of the active pro-
files is strictly bigger than the one of ql j), and of c j updated similarly with
respect to priority Ω(ql j), and with distinguished profile θ j.

On λ nodes, labelled q ρ or q ρ θ : Such a node only has one child; which the
APT labels q ρ τ (with τb ∈ ρ a profile for some variable ψ) if it guesses
that this child is labelled by a variable ψ; else it labels its child q ρ.

On Σ nodes, labelled q ρ : On such a node, the APT first has to guess a set of
directions and states {(i1, q j1), · · · , (ik, q jk)} satisfying δ(q, f ), where δ is the
transition function of the property APTB, in order to fulfill its verificational
purpose. Then, the automaton guesses which active profiles from ρ will be
used in a given direction il, and labels the direction il with the state q jl and
the environment made from the union of the active profiles of ρ guessed
useful for direction il, after updating their booleans to true if the minimal
priority they describe equals Ω(q jl) (and blocking if the maximal priority of
some of the active profiles is strictly bigger than the one of q jl). Note that
every active profile from ρ has to be allocated at least to one direction, as
we want C to always guess the smallest possible environment.

On variable nodes, labelled q ρ θ : On a variable node φ, the immediatly previ-
ous λ-node should have distinguished as θ = (φ, q,m, c) a profile for φ,
with θt ∈ ρ (else C blocks), describing the result of the β-reduction jump,
c = {θ j = (ξi j , ql j ,m j, c j)} describing the active profiles to assign as labels
to the children of φ (so that c = ∅ iff φ has order 0) - there is nothing to
check here as the check only takes place in the other directions. First of
all, the automaton guesses whether φ will be used again before it eventually
gets re-bound in another context26; define ρ′ to be ρ if it is the case, and
ρ \ θ if it is not - remember that an environment should only contain useful
data, else the automaton blocks at some point. Then, for each direction i j,
the automaton guesses which profiles from ρ′ will be used - each profile
being assigned at least to one direction - and labels the child in direction i j

with state ql j , environment the union of guessed useful profiles updated to
priority m j and of profiles of c j updated to Ω(ql j), and distinguished variable
θ j.

26Recall that the recursion schemes have a recursive power, thus the same variable name may
occur infinitely many times, but refering to infinitely many different binders (which can be identi-
fied by their justification links), because there may be an infinite recursion on the same application.



Let us see how this behaves on an example:

Example 7 (A run-tree of C). We consider the APT of Example 6, over λ(G)
of Example 1. We denote θ = (φ, 1, 1, {θ0}), θ0 = (y, 1, 1, ∅), θ1 = (z, 1, 1, ∅),
θ2 = (z, 0, 0, ∅). Then the following tree is a run-tree for this APT over λ(G) (we
added numbers as superscripts to refer easily to a given node):

λ[0] 1 ∅

@[1] 1 ∅

λz[2] 1 {θt
1, θ

f
2 }

@[3] 1 {θt
1, θ

f
2 }

λφ[4] 1 {θt}

φ[5] 1 {θt} θ

λ[6] 1 {θt} θ0

φ[7] 1 {θt} θ

λ[8] 1 ∅ θ0

@[9] 1 ∅
...

λy[10] 1 {θt
0, θ

t
1} θ

g[11] 1 {θt
0, θ

t
1}

λ[12] 1 {θt
1}

z[13] 1 {θt
1} θ1

λ[14] 1 {θt
0}

y[15] 1 {θt
0} θ0

λy[16] 1 {θt
0, θ

f
2 } θ

g[17] 1 {θt
0, θ

f
2 }

λ[18] 0 {θt
2}

z[19] 0 {θt
2} θ2

λ[20] 1 {θt
0}

y[21] 1 {θt
0} θ0

λ[22] 1 ∅ θ1

a[23] 1 ∅

λ[24] 0 ∅ θ2

a[25] 0 ∅

1

• At the beginning, the node [0] is labelled with the initial state 1 ∅. The root
is a λ, its child is not a variable: so [1] is labelled 1 ∅.

• [1] is an applicative node. Thus it guesses that z will be used, and its eval-
uation in a run-tree of B may either return in state 1 or 0, with respective
smallest encountered priority 1 or 0; it also guesses that both possibilities
will be used in the current run: so c is set equal to {θt

1, θ
f
2 }, and each of

these two possible values is explored, respectively in direction 1 and 2, with
an empty environment (because ρ and the interfaces of θ1 and θ2 are), with
distinguished profile θ1 or θ2.

• In directions 1 and 2, λ guesses that a is not a variable node, thus labels its
child with 1 ∅; then on a the automaton stops the exploration, but does not
block as δ(1, a) = δ(2, a) = >.



• In direction 0, the node [2] is met; it is a λ, which guesses that its child is
not a variable and thus does not distinguish a variable profile from ρ for it.

• At the node [3], C first guesses an active profile27 θ for φ, which is the new
introduced variable, refering the only argument of this new application. θ
embeds, as its interface, the information that its evaluation results (in the
current run) to labelling its child with θ0; to verify this guess, and provide
information about the evaluation of z, C affects the environments {θt

0, θ
t
1} and

{θt
0, θ

f
2 } to the directions 1 and 2 - again, the two possibilities are explorated

simultaneously in this run, by duplicating the subtree rooted on [10].

• In direction 1, the λ-node [10] guesses that its son is not a variable, and thus
does not provide it a distinguished profile. Then g dispatches the profiles of
its environment to its two children, the λ nodes then provide to the order-0
variables at nodes [13] and [15] a distinguished profile that matches them;
the automaton stops the exploration in these directions but does not block.
In direction 2, a similar process occurs.

• In direction 0, C arrives at node [4], which is a λ. It guesses that its child
is φ, and thus distinguishes a profile for φ - here there is no choice, so θ is
chosen.

• C goes to node [5]: it is a variable of order non-0, with only one child. C
guesses that φ will be used again within the range of its binder (node [4]),
and thus does not suppress its profile from the environment. θ0 is affected
as a distinguished label to the node [6], and state is still 1, as θ0, which
represents the β-reduction process of φ, indicates that this process returns in
state 1.

• At λ-node [6], C guesses that its child is φ, and thus provides it a suitable
distinguished profile.

• [7] agains requires a β-computation of φ, which (in this run) behaves as θ0

describes it. C guesses that φ will not be used anymore, so it is suppressed
from the environment that is puts to [8] as a label; θ0 is added as a distin-
guished profile in [8] as the return value of the β-reduction.

• At λ-node [8], C guesses that its child is not a variable, and does not distin-
guish a profile in the labelling it gives it.

• At node [9], a new application starts; so does a similar process.

27There may have been several, if the β-reduction path that is being simulated lead to different
return states; in the run presented in this example, this is not the case.



We then have that C simulates the traversals of B, in the sense that there is an
accepting run-tree of C over λ(G) iff there is an accepting traversal-tree of B over
λ(G).28

3.2 A machine equivalent to the n-RS: the n-CPDA
Another way of simulating traversals of λ(G) was introduced in [5], and is based
on a new kind of machine, called (n-)Collapsible Pushdown Automata, whose ex-
pressivity is the same as (order-n) recursion schemes, and whose behaviour allows
a proper simulation of traversals over the computation tree of a recursion scheme.
We first introduce these new machines, and then explain how they simulate traver-
sals over λ(G).

n-CPDA. n-CPDA are essentially pushdown automata working on stacks of
stacks of stacks . . . of symbols enriched with links to stacks of lower order situated
below them in the n-stack; a 1-CPDA has an usual stack plus links, a 2-CPDA has
a stack of stacks, . . . These devices generate trees.

Definition 11 (n-stacks with links). A 0-stack is just a stack alphabet symbol; a n-
stack is a sequence of (n−1)-stacks where non-⊥ symbols have a link to a previous
stack (of any order). ⊥ is a distinguished stack bottom symbol that should be the
bottom symbol of any 1-stack occuring in the n-stack, and not appear at any other
position.

Definition 12 (n-stack operations). The operations on a n-stack are the following
ones:

topi returns the top (i − 1)-stack of the argument n-stack.

popi removes the top (i − 1)-stack from the argument n-stack.

Order 1 push: pusha,k
1 adds a to the top position of the top 1-stack, with a link to

the closest (k − 1)-stack.

Order i ≥ 2 push just duplicates the top (i − 1)-stack; it preserves the link struc-
ture, in the sense that links that originally pointed outside of the top (i − 1)-
stack are duplicated as links pointing exactly to the same position, and in the
duplicated stack links that were pointing inside the top (i − 1)-stack points
to their duplicated equivalent.

Collapse removes everything that is over the position the top symbol points to.

28See [9], sections 4 and 5, for a proof.



Example 8 (Some stack operations). Start with the 3-stack s = [[[⊥a]][[⊥][⊥a]]]
(we do not represent links which points to the immediate previous symbol, for the
sake of readability). We perform on it several operations:

• pushb,2
1 s = s1 = [ [ [⊥ a ] ] [ [⊥ ] [⊥ a b ] ] ]

• pushc,3
1 s1 = s2 = [ [ [⊥ a ] ] [ [⊥ ] [⊥ a b c ] ] ]

• push2 s2 = s3 = [ [ [⊥ a ] ] [ [⊥ ] [⊥ a b c ] [⊥ a b c ] ] ]

• push3 s2 = s′3 = [ [ [⊥ a ] ] [ [⊥ ] [⊥ a b c ] ] [ [⊥ ] [⊥ a b c ] ] ] 29

• collapse s3 = collapse s′3 = [ [ [⊥ a ] ] ]

Definition 13 (n-CPDA). A n-CPDA is a tuple A = < Σ,Γ,Q, δ, q0 > where Σ

is a ranked output alphabet, Γ is the stack alphabet (with a stack bottom symbol
⊥), Q is a finite state set, q0 is the initial state, and δ : Q × Γ → Q × Opn ∪
{( f ; q1 · · · qar( f ))/ f ∈ Σ, qi ∈ Q}30 maps a state and the stack top symbol to either
an operation to perform on the stack and a new state, either to an output move.
Transitions are defined over configurations (q, s) with q ∈ Q and s a n-stack; the
initial configuration is (q0,⊥n) where ⊥n is the empty n-stack [· · · [⊥] · · · ]. There
are three kinds of transitions:

• Internal moves: (q, s)
(q′,θ)−−−→ (q′, s′) if δ(q, top1 s) = (q′, θ) and s′ = θ(s)

• Proponent moves: (q, s)
( f ,q1,··· ,qar( f ))−−−−−−−−−→ ( f ; q1, · · · , qar( f ); s) if

δ(q, top1 s) = ( f , q1, · · · , qar( f ))

• Opponent moves: ( f , q1, · · · , qar( f ); s)
( f ,i)−−−→ (qi, s) for each 1 ≤ i ≤ ar( f ).

A computation path is then a sequence of configurations and transitions link-
ing them, starting from the initial configuration.
One may recognize the vocabulary from game semantics31; the idea, as in the

29Notice here the difference of link structure beetween s3 and s′3: the links inside the duplicated
n-stack are duplicated so that they point to the copies, whereas links pointing outside of it are
duplicated to point to the same stack as the original did.

30δ is required not to push or pop ⊥ symbols.
31For an introduction, one may consult [1]



computation of traversals, is that the Proponent provides a choice of branches to
explore, and the Opponent picks one; the internal moves are hidden in the result,
as they just are local computations used to determine the symbols to output. We
will use deterministic n-CPDA, in the sense that two transitions with the same
label from a same configuration give the same result. In a sense, the idea is that
the only "non-determinism" is not really one, but is a choice by the Opponent of a
direction to explore. The tree generated by a n-CPDA is then the one that can be
built from the computation of all its branches, that are all the possible computation
paths of the n-CPDA.

n-CPDA simulate traversals. n-CPDA and order-n recursion schemes are equi-
expressive: they generate the same trees. The idea32 is that one can encode the
n-stacks as properly typed non-terminals of a recursion scheme, and the converse
inclusion comes from the fact that traversals over the computation tree λ(G) of
some recursion scheme can be computed by a traversal-simulating n-CPDA; then
it follows from the Path-Traversal correspondence that this n-CPDA computes
every path (actually, the one the Opponent requires by his successive choices) of
[[G]]. In the following, we sketch this converse inclusion, with an emphasize on
the simulation of traversals by n-CPDAs.
In the following, we denote Ei(u) the child in direction i of the node u of λ(G),
and v0 the root of λ(G).

Definition 14 (The traversal-computing n-CPDA A). For a fixed order-n recur-
sion scheme G, we define its traversal-computing n-CPDA to be the automaton
whose output alphabet is the alphabet used for the output of G, whose stack al-
phabet is the set of labels of nodes of λ(G), and whose initial configuration is
(q0, [· · · [⊥v0] · · · ])33, and whose transition function acts as follows, depending on
the top stack symbol u34:

• If u is the label @ of some applicative node, δ(u) = pushE0(u)
1 .

• If u is the label f of some Σ-node, δ(u) = pushEi(u)
1 , where 1 ≤ i ≤ ar( f ) is

the direction the Opponent chooses.35

32Proofs in [5].
33This is not exactly the definition of n-CPDA we used, but it should be immediate to see that

adding an initial state that pushes v0 and goes to state q0 gives an equivalent automaton fulfilling
the definition.

34Instead of giving a formal definition, we give here a definition which allows to compose sev-
eral n-stack operations - a formal definition would need to consider intermediate states therefore.
Thus we do not consider states explicitely here.

35This case is the one generating trees: this transition hides the output of f by the Proponent,
plus the choice of a direction to compute by the Opponent. All the other cases correspond to
internal moves.



• If u is a λ-node, δ(u) = pushE1(u)
1 .

• If u is a variable φ of order l, which is the ith parameter of its binder; that
this binder is a j36-child, and that there are p nodes on the path in λ(G) from
φ to its binder, comprising these two nodes, we have:

– If l ≥ 1 and j = 0, δ(u) = pushn−l+1 ; popp
1 ; pushEi(top1),n−l+1

1 (sequen-
tial composition of operations on the n-stack being denoted by ;, and
the power refering to the iteration of this sequential composition)

– If l, j ≥ 1, δ(u) = pushn−l+1 ; popp−1
1 ; collapse ; pushEi(top1),n−l+1

1

– If l = 0 and j = 0, δ(u) = popp
1 ; pushEi(top1)

1

– If l = 0 and j ≥ 1, δ(u) = popp−1
1 ; collapse ; pushEi(top1)

1

We first consider a run on an example:

Example 9 (Runs and traversals). Here we consider the traversal-computing 2-
CPDA associated to λ(G) of Example 1. Recall that the following justified se-
quence over λ(G) is a traversal, as seen in Example 2:

λ @ λz @ λφ φ λy g λ y λ φ λy g λ z λ a
0 0 1

1

2

11
11

1

11

We represent here the stack configurations that occur during the computation of
this traversal by the traversal-computing 2-CPDA. Trivial steps may be skipped
(denoted by the use of→∗), and trivial links are not displayed.

36So, j = 0 means that the variable corresponds to an actual parameter of the application;
j ≥ 1 means that the the variable is a local one, used while proceeding a β-reduction.



(1) [ [ ⊥ λ ] ]
(2) →∗ [ [ ⊥ λ @ λz @ λφ φ ] ]

(3) → [ [ ⊥ λ @ λz @ λφ φ ] [ ⊥ λ @ λz @ λy ] ]

(4) →∗ [ [ ⊥ λ @ λz @ λφ φ ] [ ⊥ λ @ λz @ λy g λ y ] ]
(5) → [ [ ⊥ λ @ λz @ λφ φ λ ] ]
(6) → [ [ ⊥ λ @ λz @ λφ φ λ φ ] ]

(7) → [ [ ⊥ λ @ λz @ λφ φ λ φ ] [ ⊥ λ @ λz @ λy ] ]

(8) →∗ [ [ ⊥ λ @ λz @ λφ φ λ φ ] [ ⊥ λ @ λz @ λy g λ z ] ]
(9) → [ [ ⊥ λ @ λz @ λφ φ λ φ ] [ ⊥ λ @ λ ] ]
(10) → [ [ ⊥ λ @ λz @ λφ φ λ φ ] [ ⊥ λ @ λ a ] ]

• From step 1 to step 2, the automaton just goes down in the tree, visiting the
0-child when it finds a @37, starting from the root, and it stores what it finds.

• From step 2 to step 3: the top1 stack value was a variable node of order
l = 1, and we have j = 0 because φ refers to an actual argument of the ap-
plication. Thus the first rule for variables applies: the automaton duplicates
the top 1-stack with a push2 operation, then removes every top1 symbol
until it finds the @ of the application which φ refers to, then it pushes its
child in direction 1 (so, the code corresponding to the first argument, which
corresponds to φ), with a link to the former 1-stack so that collapsing from
there returns to where the β-jump started.

• From step 3 to step 4: the exploration of the argument’s code is performed;
the Opponent chooses to explore the direction 2 when g is visited.

• From step 4 to step 5: the top1 symbol is an order-0 variable, thus the
current β-reduction is finished. For y, j = 1, as it corresponds to the first
(and only) argument of φ. Thus, the traversal jumps back to where the β-
jump started, by successive pops until the binder of y and then a collapse
that returns; and the traversal now knows that it has to explore the child of
φ in direction 1: so it pushes the corresponding label (the rule here is the
fourth for variables).

37Recall a traversal simulates a call-by-name β-evaluation of a program, so in an application,
the applicative code is visited first, and arguments only are when they are refered to.



• From step 5 to step 6: the exploration continues; φ is found.

• From step 6 to step 7: here the behaviour is similar to what happened from
step 2 to step 3.

• From step 7 to step 8: the exploration of the argument’s code is performed;
the Opponent chooses to explore the direction 1 when g is visited.

• From step 8 to step 9: the top1 symbol is a z, which is an order-0 vari-
able: the current β-jump is then finished, and should return to the argument
corresponding to z, which is the first argument of the first application the
traversal met while proceeding the tree. The rule here is the third for vari-
ables, which leads the automaton to pop everything until the @ node z is
associated with (so, the first in the tree) is found; then its first child, whose
value corresponds to the one z represents, is visited and pushed on the top.

• From step 9 to step 10: the exploration continues; a is found. As its arity is
0, the Opponent has no move and the computation stops. One may recog-
nize that we simulated here the traversal corresponding to the branch g ·g ·a
in [[G]].

In this example, the 2nd rule for variables was not used: it is only used at order
at least 3, when the depth of β-jumps may be more than just 1. One may refer to
[4, Appendix A] for an (order-3) example. The idea is that, at higher orders, the
computation of an argument during a β-reduction (of, say, φ) can itself need a β-
reduction (of, say, ξ). Then, the current context is saved by performing a pushn−l+1

operation: notice that, l being smaller for the variables occuring inside a β-jump,
this duplication includes a "save" of the current state of the β-jump (computing
φ) which is requiring to launch this new β-jump (computing ξ). Then, we need
to access the subtree which stores the code for the argument that corresponds to
ξ; and ξ itself describes one argument of φ. The traversal thus has to visit the
corresponding child of φ: for this, after the copy made by the pushn−l+1 operation,
we pop until the binder of ξ is the top1 symbol and then collapse, going back
this way to φ; then we can visit the subtree that corresponds to the argument of φ
described by ξ by pushing the son in appropriate direction of the current node (φ).

Traversals and n-stacks configurations One may have noticed that reading the
2-stacks of the example does not exactly simulates the growth of the traversal.
There is a little transformation to perform:

• On n-stacks: if s is a n-stack, we define the sequence s̄ which is obtained by
starting to read the n-stack from the right, ignoring every [ , ] , or ⊥ symbol,
and following links (thus s̄ does not contain the nodes beetween the source



and the destination of a link, these two being included in s̄). In Example 9,
one may check that at step 8, s̄ = @ λz @ λφ φ λ φ λy g λ z

• On traversals: if t is a traversal, we define t̂, obtained from t by removing

every w sandwiched between matching pairs of the shape $ λ
i

, with i ≥ 1

and $ an order-1 variable or an @ symbol (so that w = λφ̄ · · · φi

i

where
φi has order 0). The information stored in t̂ suffices to define the traversal
it represents: hiding the internal moves corresponding to the β-reduction
of order-1 variables does not matter, as the node where this computation
returns, which describes the result of this β-reduction, is kept in t̂.

We then define the computation of a traversal by a n-stack (of a n-CPDA) as
follows:

Definition 15. If s is a reachable n-stack of the traversal-computing n-CPDA of
G, and t a traversal over λ(G), s is said to compute t iff all of the following holds:

• top2 s = dte

• s̄ = t̂

• If top2 s = [⊥ s1 · · · sn ], and v1, · · · , vn are the labels of t that corresponds
to s1, · · · , sn, then popn−i

1 s computes the prefix of t ending at vi, included.

• If top2 s = [⊥ s1 · · · sn ], and v1, · · · , vn are the labels of t that corresponds
to s1, · · · , sn, then collapse(popn−i

1 s) computes the prefix of t ending at vi,
excluded.

The result is then that:

Theorem 3. If s computes t, then s and t are bisimilar, in the sense that:

• If s′ is reachable from s, then t can be extended to t′ such that t is a prefix of
t′ and t′ is a traversal over λ(G), and s′ computes t′.

• If t can be extended to t′ such that t is a prefix of t′ and t′ is a traversal over
λ(G), then there is an n-stack s′ reachable from s which computes t′.

Then, n-CPDA can compute traversals, as the APT we built in the previous
section could. Both devices may then be used for a traversal-based resolution of
our model-checking problem.



4 Solving the parity games

Now that we obtained traversal-simulating devices, we may perform verification
using them. For the APT approach, we first build a parity game whose resolution
is equivalent to the existence of an accepting run-tree of the APT over a given
tree: we can then use it for C over λ(G) and perform our verification task this
way. For the n-CPDA approach, we use a similar kind of verification parity game,
over the set of its configurations - provided that n-stacks of a traversal-computing
n-CPDA compute the traversals over a given tree, this gives a way to model-check
these traversals over the computation tree of a recursion scheme, and thus the tree
generated by the scheme thanks to the Path-Traversal correspondence.

4.1 On the APT

An APT defines a parity game. As seen in Section 2, a given run-tree is ac-
cepting iff it satisfies the usual parity condition on parity games; we shall see here
that there is a way, given an APT C and a tree λ(G), to build a parity game where
Eloïse has a winning strategy iff there is an accepting run-tree of C over λ(G). The
idea is that Eloïse has control on the guess of satisfying sets, so she chooses the
run-tree to prove accepting; and Abélard chooses the path whose parity he wants
to check.
To obtain a finite game, we need to turn λ(G) into an "equivalent" graph, in the
sense that unravelling it gives λ(G). We gave an idea of it in footnote 4: instead
of iterating ad infinitum the expansion of the rules of [[G]] to obtain a possibly
infinite term and thus a possibly infite tree, we generate first a forest where every
right part of a rule is a tree; then, we identify in this forest the nodes labelled by
a non-terminal with the root of the tree which corresponds to this non-terminal in
the initial forest. So we inserted loops in the generated graph, instead of iterating
them. We denote this graph as Gr(G).

Example 10 (A generated graph.). The RHS-transformed scheme from Example
1 leads to the following generated graph, where [S ], [F] and [H] indicate the roots
of the corresponding rules:
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From Gr(G) and C, we now build an acceptance parity game as follows: with
Q the set of states of C and δ its transition function, we first define, for a given
node v of Gr(G), and a set P of couples of possible directions for children of v
and of states of Q, the set [P]v = {(u, q) / (i, q) ∈ P and u is the child node of v
in direction i}. So, given a set P of possible labellings of directions by states38 for
the children of v, [P]v gives the set of every nodes with their state labelling that
may appear in a run-tree as children of v. We can now define the acceptance parity
game of C over Gr(G) as:

Definition 16 (Acceptance parity game of C over Gr(G)). The acceptance parity
game of C over Gr(G) has:

• Two kind of vertices:

– The vertices controlled by Abélard are the sets [P]v, with v a node of
Gr(G) and P a set of couples of direction for children of v and states
for labelling them.

38P will be used as a satisfying set for δ: so [P]v gives the set of all possible children nodes with
all possible state affectations for them in a run-tree of C.



– The vertices controlled by Eloïse are the pairs of vertices of Gr(G) and
states of Q.

• Two kind of edges:

– From every Abélard-owned vertex [P]v, there is for each (u, q) ∈ [P]v

an edge from this vertex to the Eloïse-owned vertex (u, q).

– From every Eloïse-owned vertex (v, q), there is for each set P of cou-
ples of directions and states satisfying δ(q, v) an edge from this vertex
to the Abélard-owned vertex [P]v.

• A priority function Ω which maps the vertices (v, q) to the priority of q given
by C, and vertices [P]v = {(u1, q1), · · · , (ur, qr)} to the maximal C-priority
that is found among the C-priorities of q1, · · · , qr.

A play is then a path on the parity game, starting from (v0, q0), where v0 is the
root of Gr(G), corresponding to the axiom S of G, and q0 is the initial state of C;
the play alternates between Eloïse-owned and Abélard-owned vertices. From an
Eloïse-owned vertex, Eloïse chooses an Abélard node linked to the current node
by an edge; Abélard acts similarly. If a play is finite, the player who cannot move
looses; if a play is infinite, Eloïse wins iff the minimal priority among the ones
which occur infinitely often is even.
It should be clear that Eloïse has a winning strategy for this game iff C has an
accepting run-tree over Gr(G), and thus over λ(G) by unravelling: the plays of
Eloïse correspond to choosing locally which satisfying set for δ at the current node
and in the current state should be used, so that Eloïse has the power to choose the
run-tree she thinks is accepting, and Abélard chooses which branch of this run-
tree should be explored; he tries to win, and thus he tries to find a branch which
does not satisfy the parity condition. If there is no such one, Eloïse wins: that
means that she provided an accepting run-tree of C over Gr(G). If Eloïse does not
have any way to win, then it means that there is no such tree.

Complexity result. Now that we have a verification parity game for our modal
µ-calculus model-checking problem, we may use the following theorem from [6]:

Theorem 4 (Jurdsziński 2000). The winning region of Eloïse and her winning
strategy in a parity game with n vertices and m edges and p ≥ 2 priorities can be
computed in time:

O(p · m · ( n
b p

2 c
)b

p
2 c)

This leads to:



Theorem 5 (Ong 2006). The modal µ-calculus model-checking problem for trees
generated by order-n recursion schemes is n-EXPTIME complete, for every n ≥ 0.

because we have equivalence of the following assertions:

• A modal µ-calculus formula φ holds at the root of [[G]] generated by G

• Property APT B has an accepting run-tree over [[G]]

• Property APT B has an accepting traversal-tree over λ(G)

• Traversal-simulating APT C has an accepting run-tree over λ(G)

• Eloïse has a winning strategy in the acceptance parity game for C over λ(G)

4.2 On the n-CPDS
Using the n-CPDA for computing traversals also leads to a model-checking pro-
cedure by solving parity games on the configuration graph (and thus on n-stacks
of the traversal-computing n-CPDA, which, as we have seen, have a strong link
with traversals). In this approach though, the verification is not performed on the
generated tree nor on its computation tree λ(G), but on the configuration graph of
the automaton. This is equivalent, since n-CPDA and order-n recursion schemes
are equi-expressive; informally the idea is that instead of working on the traversals
of λ(G) for our verification purpose, as in the APT approach, we may just work
on the n-stacks of a traversal-computing n-CPDA given that they compute traver-
sals. In the following, we will then focus on the verification of a given modal
µ-calculus formula φ over a configuration graph of a slightly different device, the
n-Collapsible Pushdown System (n-CPDS), which basically is a n-CPDA without
output moves - the direction to compute will then be choosen by the Opponent in
a (parity) game over the n-CPDS configuration graph.

n-CPDS and their configuration graphs. We define n-CPDS as follows:

Definition 17 (n-CPDS). A n-CPDS is a tuple A = < Γ,Q, δ, q0 > where Γ is
the stack alphabet (with a stack bottom symbol ⊥), Q is a finite state set, q0 is the
initial state, and ∆ : Q × Γ × Q × Opn .39

Transitions are defined over configurations (q, s) with q ∈ Q and s a n-stack; the
initial configuration is (q0,⊥n) where ⊥n is the empty n-stack [· · · [⊥] · · · ]. We re-
moved output moves, so the only kind of transitions is now the one corresponding

39∆ is required not to push or pop ⊥ symbols; in this definition non-deterministic moves are
allowed, but for our verification purpose, provided that the n-CPDS is obtained from a n-CPDA
without output moves, it will be deterministic in the sense that we discussed in Section 3.2.



to internal moves: we have the transition (q, s)
(q′,θ)−−−→ (q′, s′) iff s′ = θ(s) and

(q, s, q′, θ) ∈ ∆.

Definition 18 (n-CPDS configuration graph). Given a n-CPDS, its configuration
graph is the graph:

• whose vertices are the reachable configurations

• and whose (labelled) edges are the one induced by the transition relation
(q′,θ)−−−→ over reachable configuration.

Example 11 (A 2-CPDS and its transition graph). We consider a 2-CPDS on the
stack alphabet Σ = {⊥, a} and with states in Q = {0, 1, 2)}. Its transition set
contains the following rules: (0,⊥, 1, push2), (0, a, 1, push2), (1,⊥, 2, pusha,2

1 ),
(1, a, 2, pusha,2

1 ), (2, a, 1, push2), (2, a, 0, collapse). A part of its configuration
graph follows:

(0, [ [⊥ ] ]) (1, [ [⊥ ] [⊥ ] ])

(2, [ [⊥ ] [⊥ a ] ])(1, [ [⊥ ] [⊥ a ] [⊥ a ] ])

(2, [ [⊥ ] [⊥ a ] [⊥ a a ] ])
. . .

(0, [ [⊥ ] [⊥ a ] ]) . . .

push2

pusha,2
1

collapse

push2

pusha,2
1

push2

collapse
push2

Verification parity games over n-CPDS configurations graphs Parity games
can easily be defined over n-CPDS configuration graphs: given a partition of
states of Q beetween states belonging to Abélard and states belonging to Eloïse,
there is an induced partition of vertices, where one vertex is owned by the owner
of its control state. A priority function Ω over Q also induces a coloring of the
vertices, leading to a parity game. Using results from Section 2.3 and Section
4.1, it is then equivalent to decide whether Eloïse has a winning strategy from
the initial configuration of a n-CPDS parity game or to decide whether φ holds



at the initial configuration of the n-CPDS transition graph. And, using the equi-
expressivity of n-CPDA40 and order-n recursion schemes, we obtain:

Theorem 6. The problem of deciding whether Eloïse has a winning strategy from
the initial configuration of a given n-CPDS parity game is equivalent to the prob-
lem of deciding whether a given modal µ-calculus formula φ holds at the root of
a tree generated by an order-n recursion scheme.

Sketch of a strategy for solving n-CPDS parity games. In Section 6 of [5], an
interesting process of order reduction for the n-CPDS parity games is introduced,
building from a given n-CPDS parity game G an equivalent (n − 1)-CPDS parity
game Ĝ, in the sense that Eloïse has a winning strategy from the root of G iff she
has a winning strategy from the root of Ĝ, and that from a winning strategy for
one of these two games one can effectively build one for the other game. We only
give there some intuitions about this order reduction, details may be found in [5].
The idea is first to enrich G’s configurations by building an equivalent n-CPDS
parity game Ḡ which is obtained by working on a bigger stack alphabet: instead
of just having symbols from the stack alphabet of G in the n-stack of Ḡ, we have
tuples stocking (among other things that mainly have a technical reason of being)
information about the minimal colour encountered since the creation41 of the top
i-stack, for every 1 ≤ i ≤ n − 1. This extra information makes the new game Ḡ
collapse-rank aware: when the top1 symbol links to a stack of order n − 1, then
just reading this top1 symbol one can determinate the minimal colour encountered
since the last time the n-CPDS was in a configuration (q′, collapse(s)), i.e. since
the last configuration where the n-stack was equal to what collapsing the current
one would give.
To build a (n − 1)-CPDS parity game Ĝ equivalent to the original order-n one
(that is Ḡ, the collapsible-rank aware system we just built), we have to consider
only one order-(n − 1) stack from the n-stack of the original automaton. Thus we
cannot access to the (n− 1)-stacks situated below the one played in the equivalent
order-(n − 1) game. The idea is then that a play over Ḡ can be factorized in finite
segments that does not access (n − 1)-stacks below a given one. We first need to
define stack height as the number of (n−1)-stacks in a n-stack. Then, given a play
Λ = s0s1 · · · , we define a set S tepsΛ which is the set of indices of positions of the
play such that no configuration of smaller stack height than the one at the position

40n-CPDS are not expressive in the sense that they do not generate anything, but in the case of
traversal-computing n-CPDAs, the computed branch may be reconstructed very easily by just out-
puting the symbols of the tree alphabet when they are pushed to the n-stack: thus in our verification
problem the n-CPDS configurations can be used equivalently.

41An i-stack is considered to be created when obtained by a pushi+1 move; the stacks contained
inside this i-stack keep the "creation time" they had before duplication.



given by the indice is reached later in the play. This induces a finite factorization
of Λ beetwen two kind of finite sequences of consecutive moves: considering i
and j two consecutive42 indices of S tepsΛ, with i < j, we define:

• bumps, which are sequences of consecutive positions of Λ starting on vi,
ending on v j, where the stack height is stricly higher beetween the ends,

• and stairs, where v j reaches a stack height increased by one43.

Each of these sequences of moves being finite, the parity condition over Ḡ is then
fulfilled iff the sequence of minimal colours in each sequence of the factorization
satisfies it. The idea is then to play on a (n − 1)-stack of the original game Ḡ,
which is the one corresponding to the minimal stack height at the current position
of the game. Moves inside this (n − 1)-stack are perfomed, as well as collapse
operations that point inside it (all these moves are called trivial bumps, because
they are bumps of length 2); stair moves are also performed in the new game: the
(n − 1)-stack of Ḡ we were playing on will not be used later in the play, so the
new game simulates from now the (n − 1)-stack that is just over it in the original
n-stack. The problem is now to simulate properly non-trivial bumps, as we cannot
create new (n−1)-stacks to play on in the new game. The idea is then that, instead
of performing "for real" these non-trivial bumps, Eloïse gives Abélard informa-
tion about how the simulation of the non-trivial bump ends, and which was the
minimal encountered colour in the simulation of the bump, returning at the stack
height that corresponds to the (n − 1)-stack the new game has - the collapse-rank
awareness then allows Eloïse to compute properly this information. If Abélard
suspects Eloïse of missimulating the bump or returning a wrong minimal colour,
he then has the possibility to ask for the real performing of the simulation; he
wins if Eloïse tried to fool him and looses if he doubted of a real information.
Else, Abélard can choose to trust Eloïse, and then the simulation continues con-
sidering the next sequence of moves in the factorization of the play.
This process leads to an exponentially bigger (n − 1)-CPDS parity game Ḡ which
is equivalent to the original n-CPDS parity game Ḡ. Iterating the transforms re-
duces our problem to the case of non-collapsible pushdown automata, which was
studied by Walukiewicz in [10].

Complexity result. First of all, the transformation giving Ḡ from G makes the
game exponentially bigger. Then, every order reduction makes the equivalent
game of lesser order exponentially bigger, and the case of the order-1 games is the

42In the sense that there is no k ∈ S tepsΛ such that i < k < j.
43Note that it means that the automaton reached a new minimal stack height, in the sense that at

no further position the play may go back to a lower stack height than this new one.



one of pushdown parity games44 whose solving was proved EXPTIME-complete
by Walukiewicz in [10]. So we have that solving a n-CPDS parity game is n-
EXPTIME complete, and this gives another proof of Theorem 5, as well as another
method for performing verification over order-n recursion schemes.

5 Conclusions and further directions
In this paper we have presented the two game-semantics based approaches for
the modal µ-calculus model-checking over trees generated by recursion schemes.
A new interesting approach by Ong and Kobayashi, developped in [7], uses type
systems to prove the same result, without having to translate the original recur-
sion scheme with the RHS transform: a type system is built, in which a recursion
scheme is typable iff its generated tree satisfies a given modal µ-calculus formula.
The resulting proof is comparatively easier to understand, and leads to some effi-
cient - yet still in development - model-checking algorithm.

44Remember that order-1 links are just links to the previous stack symbol: so the collapse
operation is just the pop1, and thus collapsing adds no expressivity at order 1.
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