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What is model-checking?
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The halting problem

A natural question: does a program always terminate?

Undecidable problem (Turing 1936): a machine can not always determine
the answer.

What if we use approximations?
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Model-checking

Approximate the program −→ build a modelM.

Then, formulate a logical specification ϕ over the model.

Aim: design a program which checks whether

M � ϕ.

That is, whether the modelM meets the specification ϕ.
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An example

Main = Listen Nil
Listen x = if end_signal() then x

else Listen received_data() :: x
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An example

Main = Listen Nil
Listen x = if end_signal() then x

else Listen received_data()::x

A tree model:

if

if

if
...data

data

Nil

data

Nil

Nil

We abstracted conditionals and datatypes.
The approximation contains a non-terminating branch.
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Finite representations of infinite trees

if

if

if
...data

data

Nil

data

Nil

Nil

is not regular: it is not the unfolding of a finite graph as

if

Nil if

data

Nil
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Finite representations of infinite trees

if

if

if
...data

data

Nil

data

Nil

Nil

but it is represented by a higher-order recursion scheme (HORS).
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Higher-order recursion schemes

Some regularity for infinite trees

Charles Grellois (AMU) Intro to HOMC June 20, 2019 7 / 44



Higher-order recursion schemes

Main = Listen Nil
Listen x = if end_signal() then x

else Listen received_data() :: x

is abstracted as

G =

{
S = L Nil

L x = if x (L (data x ) )

which represents the higher-order tree of actions

if

if
...data

Nil

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

Rewriting starts from the start symbol S:

S →G
L

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

L

Nil
→G

if

L

data

Nil

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

if

L

data

Nil

Nil

→G

if

if

L

data

data

Nil

data

Nil

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

〈G〉 =

if

if

if

...data

data

Nil

data

Nil

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

HORS can alternatively be seen as simply-typed λ-terms with

simply-typed recursion operators Yσ : (σ → σ)→ σ.
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Alternating parity tree automata

Checking specifications over trees

(see Chapter 2)
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Monadic second order logic

MSO is a common logic in verification, allowing to express properties as:

« all executions halt »

« a given operation is executed infinitely often in some execution »

« every time data is added to a buffer, it is eventually processed »
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Alternating parity tree automata

Checking whether a formula holds can be performed using an automaton.

For an MSO formula ϕ, there exists an equivalent APT Aϕ s.t.

〈G〉 � ϕ iff Aϕ has a run over 〈G〉.

APT = alternating tree automata (ATA) + parity condition.
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Alternating tree automata
ATA: non-deterministic tree automata whose transitions may

duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).
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Alternating tree automata
ATA: non-deterministic tree automata whose transitions may

duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if

if

...data

data

Nil

data

Nil

Nil

−→Aϕ

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil
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Alternating parity tree automata
Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

c1

c2

c3

c4

c5
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Alternating parity tree automata
Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ϕ:

Aϕ has a winning run-tree over 〈G〉 iff 〈G〉 � ϕ.
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The higher-order model-checking problems
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The (local) HOMC problem
Input: HORS G, formula ϕ.

Output: true if and only if 〈G〉 � ϕ.

Example: ϕ = « there is an infinite execution »

if

if

if
...data

data

Nil

data

Nil

Nil

Output: true.
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data
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data

Nil
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The global HOMC problem
Input: HORS G, formula ϕ.

Output: a HORS G• producing a marking of 〈G〉.

Example: ϕ = « there is an infinite execution »

Output: G• of value tree:

if•

if•

if•
...data

data

Nil

data

Nil

Nil
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The selection problem
Input: HORS G, APT A, state q ∈ Q.

Output: false if there is no winning run of A over 〈G〉.
Else, a HORS Gq producing a such a winning run.

Example: ϕ = « there is an infinite execution », q0 corresponding to ϕ

Output: Gq0 producing

ifq0

ifq0

ifq0

...
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Purpose of my thesis

These three problems are decidable, with elaborate proofs (often) relying
on semantics.

Our contribution: an excavation of the semantic roots of HOMC, at the
light of linear logic, leading to refined and clarified proofs.
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Recognition by homomorphism

Where semantics comes into play
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Automata and recognition
For the usual finite automata on words: given a regular language L ⊆ A∗,

there exists a finite automaton A recognizing L

if and only if. . .

there exists a finite monoid M, a subset K ⊆ M
and a homomorphism ϕ : A∗ → M such that L = ϕ−1(K ).

Charles Grellois (AMU) Intro to HOMC June 20, 2019 21 / 44



Automata and recognition

The picture we want:

(after Aehlig 2006, Salvati 2009)

but with recursion and w.r.t. an APT.
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Intersection types and alternation

A first connection with linear logic
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Alternating tree automata and intersection types

A key remark (Kobayashi 2009):

δ(q0, if) = (2, q0) ∧ (2, q1)

can be seen as the intersection typing

if : ∅ → (q0 ∧ q1)→ q0

refining the simple typing

if : o → o → o
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Alternating tree automata and intersection types

In a derivation typing the tree if T1 T2 :

δ ∅ ` if : ∅ → (q0 ∧ q1)→ q0 ∅
App

∅ ` if T1 : (q0 ∧ q1)→ q0

...
∅ ` T2 : q0

...
∅ ` T2 : q1App

∅ ` if T1 T2 : q0

Intersection types naturally lift to higher-order – and thus to G, which
finitely represents 〈G〉.

Theorem (Kobayashi 2009)
` G : q0 iff the ATA Aϕ has a run-tree over 〈G〉.
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A closer look at the Application rule

In the intersection type system:

∆ ` t : ( θ1 ∧ · · · ∧ θn)→ θ ∆i ` u : θiApp
∆ , ∆1 , . . . , ∆n ` t u : θ

This rule could be decomposed as:

∆ ` t : (
∧n

i=1 θi )→ θ′
∆i ` u : θi ∀i ∈ {1, . . . , n}

Right
∧

∆1, . . . , ∆n ` u :
∧n

i=1 θi

∆, ∆1, . . . , ∆n ` t u : θ′
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A closer look at the Application rule

∆ ` t : (
∧n

i=1 θi )→ θ′
∆i ` u : θi ∀i ∈ {1, . . . , n}

Right
∧

∆1, . . . , ∆n ` u :
∧n

i=1 θi

∆, ∆1, . . . , ∆n ` t u : θ′

Linear decomposition of the intuitionistic arrow:

A⇒ B = ! A( B

Two steps: duplication / erasure, then linear use.

Right
∧

corresponds to the Promotion rule of indexed linear logic.
(see G.-Melliès, ITRS 2014)
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Intersection types and semantics of linear logic

A⇒ B = ! A( B

Two interpretations of the exponential modality:

Qualitative models
(Scott semantics)

! A = Pfin(A)

[[o ⇒ o]] = Pfin(Q)× Q

{q0, q0, q1} = {q0, q1}

Order closure

Quantitative models
(Relational semantics)

! A = Mfin(A)

[[o ⇒ o]] = Mfin(Q)× Q

[q0, q0, q1] 6= [q0, q1]

Unbounded multiplicities
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An example of interpretation

λx

λy

a q0

a q1

x q1x q1

a q0

y q1x q0

In Rel , one denotation:

([q0, q1, q1], [q1], q0)

In ScottL, a set
containing the principal
type

({q0, q1}, {q1}, q0)

but also

({q0, q1, q2}, {q1}, q0)

and

({q0, q1}, {q0, q1}, q0)

and . . .
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Intersection types and semantics of linear logic

Rel!

Ehrhard

��

Bucciarelli−Ehrhard

de Carvalho
// Non-idempotent types

Ehrhard

��

oo

ScottL!
Ehrhard

Terui
// Idempotent typesoo

(Bucciarelli-Ehrhard 2001, de Carvalho 2009, Ehrhard 2012, Terui 2012)

Fundamental idea:

[[t]] ∼= { θ | ∅ ` t : θ }

for a closed term.
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Intersection types and semantics of linear logic

Rel!

Ehrhard

��

Bucciarelli−Ehrhard

de Carvalho
// Non-idempotent types

Ehrhard

��

oo

ScottL!
Ehrhard

Terui
// Idempotent typesoo

Let t be a term normalizing to a tree 〈t〉 and A be an alternating
automaton.

A accepts 〈t〉 from q ⇔ q ∈ [[t]] ⇔ ∅ ` t : q :: o

(see Chapter 5)

Extension with recursion and parity condition?
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Adding parity conditions
to the type system
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Alternating parity tree automata
We add coloring annotations to intersection types:

δ(q0, if) = (2, q0) ∧ (2, q1)

now corresponds to

if : ∅ →
(
�Ω(q0) q0 ∧�Ω(q1) q1

)
→ q0

Idea: if is a run-tree with two holes:

if

[ ]q1[ ]q0

A new neutral (least) color: ε.

We refine the approach of Kobayashi and Ong in a modal way (see Chapter
6).
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An example of colored intersection type

Set Ω(q0) = 0 and Ω(q1) = 1.

λx

λy

a q1

a q1

x q1x q1

a q0

y q1x q0

has now type
�0 q0 ∧�1 q1 → �1 q1 → q1

Note the color 0 on q0. . .
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A type-system for verification (Grellois-Melliès 2014)

Axiom
x : �ε θi ` x : θi

{ (i , qij ) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ

∅ ` a :
∧k1

j=1�Ω(q1j ) q1j → . . . →
∧kn

j=1�Ω(qnj ) qnj → q

∆ ` t : (�m1 θ1 ∧ · · · ∧�mk
θk )→ θ ∆i ` u : θiApp

∆ + �m1∆1 + . . . + �mk
∆k ` t u : θ

∆ , x :
∧

i∈I �mi θi ` t : θ
λ

∆ ` λ x . t :
(∧

i∈I �mi θi

)
→ θ

Γ ` R(F ) : θ
fix

F : �ε θ ` F : θ
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A type-system for verification
A colored Application rule:

∆ ` t : (�m1 θ1 ∧ · · · ∧�mk
θk )→ θ ∆i ` u : θiApp

∆ + �m1∆1 + . . . + �mk
∆k ` t u : θ
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A type-system for verification
A colored Application rule:

∆ ` t : (�m1 θ1 ∧ · · · ∧�mk
θk )→ θ ∆i ` u : θiApp

∆ + �m1∆1 + . . . + �mk
∆k ` t u : θ

inducing a winning condition on infinite proofs: the node

∆i ` u : θi

has color mi , others have color ε, and we use the parity condition.
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A type-system for verification

We now capture all MSO (see Chapter 6-8):

Theorem (G.-Melliès 2014, from Kobayashi-Ong 2009)
S : q0 ` S : q0 admits a winning typing derivation iff the alternating
parity automaton A has a winning run-tree over 〈G〉.

We obtain decidability by considering idempotent types.

Our reformulation
shows the modal nature of � (in the sense of S4),
internalizes the parity condition,
paves the way for semantic constructions.
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Colored models of linear logic
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A closer look at the Application rule

∆ ` t : (�m1 θ1 ∧ · · · ∧�mk
θk )→ θ ∆i ` u : θi

∆ + �m1∆1 + . . . + �mk
∆k ` t u : θ

could be decomposed as:

∆ ` t :
(∧k

i=1 �mi θi

)
→ θ

∆1 ` u : θ1
�m1 ∆1 ` u : �m1 θ1 . . .

∆k ` u : θk Right �
�mk

∆k ` u : �mk
θk Right

∧
�m1∆1, . . . , �mk

∆k ` u :
∧k

i=1 �mi θi

∆, �m1∆1, . . . , �mk
∆k ` t u : θ

Right � looks like a promotion. In linear logic:

A⇒ B = !�A( B

We show that the modality � distributes over the exponential in the
semantics.
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Colored semantics

We extend:
Rel with countable multiplicities, coloring and an inductive-coinductive
fixpoint (Chapter 9)
ScottL with coloring and an inductive-coinductive fixpoint (Chapter
10).

Methodology: think in the relational semantics, and adapt to the Scott
semantics using Ehrhard’s 2012 result:

the finitary model ScottL is the extensional collapse of Rel .
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Infinitary relational semantics

Extension of Rel with infinite multiplicities:

 A = Mcount(A)

and coloring modality (parametric comonad)

� A = Col × A

Composite comonad:    =  � is an exponential.

Induces a colored CCC Rel   (→ model of the λ-calculus).
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An example of interpretation
Set Ω(qi ) = i .

λx

λy

a q1

a q1

x q1x q1

a q0

y q1x q0

has denotation

([(0, q0), (1, q1), (1, q1)], [(1, q1)], q1)

(corresponding to the type �0 q0 ∧�1 q1 → �1 q1 → q1)
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Model-checking and infinitary semantics

Inductive-coinductive fixpoint operator: composes denotations w.r.t. the
parity condition.

Theorem
An APT A has a winning run from q0 over 〈G〉 if and only if

q0 ∈ [[λ(G)]]A

where λ(G) is a λY -term corresponding to G.

Conjecture
An APT A has a winning run from q0 over 〈G〉 if and only if

q0 ∈ [[λ(G)Σ]] ◦ [[δ†]]

where λ(G)Σ is a Church encoding of a λY -term corresponding to G.
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Finitary semantics
In ScottL, we define �, λ and Y similarly (using downward-closures).
ScottL   is a model of the λY -calculus.

Theorem
An APT A has a winning run from q0 over 〈G〉 if and only if

q0 ∈ [[λ(G)]].

Corollary
The local higher-order model-checking problem is decidable (and is
n-EXPTIME complete).

Theorem
The selection problem is decidable.
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Perspectives

A purely coinductive proof of the soundness-and-completeness theorem

Accommodating the modal approach to other classes of automata

Understanding the infinitary semantics

Logical aspects: colored tensorial logic, fixpoints. . .

Game semantics interpretations?

Is the complexity related to light linear logics?

Extensional collapse between the two colored models?
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