
Introduction to higher-order model-checking

Charles Grellois

LIS — équipe LIRICA

Séminaire LDP
20 juin 2019

Charles Grellois (AMU) Intro to HOMC June 20, 2019 1 / 44

What is model-checking?

Charles Grellois (AMU) Intro to HOMC June 20, 2019 2 / 44

The halting problem

A natural question: does a program always terminate?

Undecidable problem (Turing 1936): a machine can not always determine
the answer.

What if we use approximations?

Charles Grellois (AMU) Intro to HOMC June 20, 2019 3 / 44

Model-checking

Approximate the program −→ build a modelM.

Then, formulate a logical specification ϕ over the model.

Aim: design a program which checks whether

M � ϕ.

That is, whether the modelM meets the specification ϕ.

Charles Grellois (AMU) Intro to HOMC June 20, 2019 4 / 44

An example

Main = Listen Nil
Listen x = if end_signal() then x

else Listen received_data() :: x

Charles Grellois (AMU) Intro to HOMC June 20, 2019 5 / 44

An example

Main = Listen Nil
Listen x = if end_signal() then x

else Listen received_data()::x

A tree model:

if

if

if
...data

data

Nil

data

Nil

Nil

We abstracted conditionals and datatypes.
The approximation contains a non-terminating branch.

Charles Grellois (AMU) Intro to HOMC June 20, 2019 5 / 44

Finite representations of infinite trees

if

if

if
...data

data

Nil

data

Nil

Nil

is not regular: it is not the unfolding of a finite graph as

if

Nil if

data

Nil

Charles Grellois (AMU) Intro to HOMC June 20, 2019 6 / 44

Finite representations of infinite trees

if

if

if
...data

data

Nil

data

Nil

Nil

but it is represented by a higher-order recursion scheme (HORS).

Charles Grellois (AMU) Intro to HOMC June 20, 2019 6 / 44

Higher-order recursion schemes

Some regularity for infinite trees

Charles Grellois (AMU) Intro to HOMC June 20, 2019 7 / 44

Higher-order recursion schemes

Main = Listen Nil
Listen x = if end_signal() then x

else Listen received_data() :: x

is abstracted as

G =

{
S = L Nil

L x = if x (L (data x))

which represents the higher-order tree of actions

if

if
...data

Nil

Nil

Charles Grellois (AMU) Intro to HOMC June 20, 2019 8 / 44

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

Rewriting starts from the start symbol S:

S →G
L

Nil

Charles Grellois (AMU) Intro to HOMC June 20, 2019 9 / 44

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

L

Nil
→G

if

L

data

Nil

Nil

Charles Grellois (AMU) Intro to HOMC June 20, 2019 9 / 44

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

if

L

data

Nil

Nil

→G

if

if

L

data

data

Nil

data

Nil

Nil

Charles Grellois (AMU) Intro to HOMC June 20, 2019 9 / 44

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

〈G〉 =

if

if

if

...data

data

Nil

data

Nil

Nil

Charles Grellois (AMU) Intro to HOMC June 20, 2019 9 / 44

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

HORS can alternatively be seen as simply-typed λ-terms with

simply-typed recursion operators Yσ : (σ → σ)→ σ.

Charles Grellois (AMU) Intro to HOMC June 20, 2019 9 / 44

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

HORS can alternatively be seen as simply-typed λ-terms with

simply-typed recursion operators Yσ : (σ → σ)→ σ.

Charles Grellois (AMU) Intro to HOMC June 20, 2019 9 / 44

Alternating parity tree automata

Checking specifications over trees

(see Chapter 2)

Charles Grellois (AMU) Intro to HOMC June 20, 2019 10 / 44

Monadic second order logic

MSO is a common logic in verification, allowing to express properties as:

« all executions halt »

« a given operation is executed infinitely often in some execution »

« every time data is added to a buffer, it is eventually processed »

Charles Grellois (AMU) Intro to HOMC June 20, 2019 11 / 44

Alternating parity tree automata

Checking whether a formula holds can be performed using an automaton.

For an MSO formula ϕ, there exists an equivalent APT Aϕ s.t.

〈G〉 � ϕ iff Aϕ has a run over 〈G〉.

APT = alternating tree automata (ATA) + parity condition.

Charles Grellois (AMU) Intro to HOMC June 20, 2019 12 / 44

Alternating tree automata
ATA: non-deterministic tree automata whose transitions may

duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

Charles Grellois (AMU) Intro to HOMC June 20, 2019 13 / 44

Alternating tree automata
ATA: non-deterministic tree automata whose transitions may

duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if

if

...data

data

Nil

data

Nil

Nil

−→Aϕ

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil

Charles Grellois (AMU) Intro to HOMC June 20, 2019 13 / 44

Alternating parity tree automata
Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

c1

c2

c3

c4

c5

Charles Grellois (AMU) Intro to HOMC June 20, 2019 14 / 44

Alternating parity tree automata
Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ϕ:

Aϕ has a winning run-tree over 〈G〉 iff 〈G〉 � ϕ.

Charles Grellois (AMU) Intro to HOMC June 20, 2019 14 / 44

The higher-order model-checking problems

Charles Grellois (AMU) Intro to HOMC June 20, 2019 15 / 44

The (local) HOMC problem
Input: HORS G, formula ϕ.

Output: true if and only if 〈G〉 � ϕ.

Example: ϕ = « there is an infinite execution »

if

if

if
...data

data

Nil

data

Nil

Nil

Output: true.
Charles Grellois (AMU) Intro to HOMC June 20, 2019 16 / 44

The (local) HOMC problem
Input: HORS G, formula ϕ.

Output: true if and only if 〈G〉 � ϕ.

Example: ϕ = « there is an infinite execution »

if

if

if
...data

data

Nil

data

Nil

Nil

Output: true.
Charles Grellois (AMU) Intro to HOMC June 20, 2019 16 / 44

The global HOMC problem
Input: HORS G, formula ϕ.

Output: a HORS G• producing a marking of 〈G〉.

Example: ϕ = « there is an infinite execution »

Output: G• of value tree:

if•

if•

if•
...data

data

Nil

data

Nil

Nil

Charles Grellois (AMU) Intro to HOMC June 20, 2019 17 / 44

The selection problem
Input: HORS G, APT A, state q ∈ Q.

Output: false if there is no winning run of A over 〈G〉.
Else, a HORS Gq producing a such a winning run.

Example: ϕ = « there is an infinite execution », q0 corresponding to ϕ

Output: Gq0 producing

ifq0

ifq0

ifq0

...

Charles Grellois (AMU) Intro to HOMC June 20, 2019 18 / 44

Purpose of my thesis

These three problems are decidable, with elaborate proofs (often) relying
on semantics.

Our contribution: an excavation of the semantic roots of HOMC, at the
light of linear logic, leading to refined and clarified proofs.

Charles Grellois (AMU) Intro to HOMC June 20, 2019 19 / 44

Recognition by homomorphism

Where semantics comes into play

Charles Grellois (AMU) Intro to HOMC June 20, 2019 20 / 44

Automata and recognition
For the usual finite automata on words: given a regular language L ⊆ A∗,

there exists a finite automaton A recognizing L

if and only if. . .

there exists a finite monoid M, a subset K ⊆ M
and a homomorphism ϕ : A∗ → M such that L = ϕ−1(K).

Charles Grellois (AMU) Intro to HOMC June 20, 2019 21 / 44

Automata and recognition

The picture we want:

(after Aehlig 2006, Salvati 2009)

but with recursion and w.r.t. an APT.

Charles Grellois (AMU) Intro to HOMC June 20, 2019 22 / 44

Intersection types and alternation

A first connection with linear logic

Charles Grellois (AMU) Intro to HOMC June 20, 2019 23 / 44

Alternating tree automata and intersection types

A key remark (Kobayashi 2009):

δ(q0, if) = (2, q0) ∧ (2, q1)

can be seen as the intersection typing

if : ∅ → (q0 ∧ q1)→ q0

refining the simple typing

if : o → o → o

Charles Grellois (AMU) Intro to HOMC June 20, 2019 24 / 44

Alternating tree automata and intersection types

In a derivation typing the tree if T1 T2 :

δ ∅ ` if : ∅ → (q0 ∧ q1)→ q0 ∅
App

∅ ` if T1 : (q0 ∧ q1)→ q0

...
∅ ` T2 : q0

...
∅ ` T2 : q1App

∅ ` if T1 T2 : q0

Intersection types naturally lift to higher-order – and thus to G, which
finitely represents 〈G〉.

Theorem (Kobayashi 2009)
` G : q0 iff the ATA Aϕ has a run-tree over 〈G〉.

Charles Grellois (AMU) Intro to HOMC June 20, 2019 25 / 44

A closer look at the Application rule

In the intersection type system:

∆ ` t : (θ1 ∧ · · · ∧ θn)→ θ ∆i ` u : θiApp
∆ , ∆1 , . . . , ∆n ` t u : θ

This rule could be decomposed as:

∆ ` t : (
∧n

i=1 θi)→ θ′
∆i ` u : θi ∀i ∈ {1, . . . , n}

Right
∧

∆1, . . . , ∆n ` u :
∧n

i=1 θi

∆, ∆1, . . . , ∆n ` t u : θ′

Charles Grellois (AMU) Intro to HOMC June 20, 2019 26 / 44

A closer look at the Application rule

In the intersection type system:

∆ ` t : (θ1 ∧ · · · ∧ θn)→ θ ∆i ` u : θiApp
∆ , ∆1 , . . . , ∆n ` t u : θ

This rule could be decomposed as:

∆ ` t : (
∧n

i=1 θi)→ θ′
∆i ` u : θi ∀i ∈ {1, . . . , n}

Right
∧

∆1, . . . , ∆n ` u :
∧n

i=1 θi

∆, ∆1, . . . , ∆n ` t u : θ′

Charles Grellois (AMU) Intro to HOMC June 20, 2019 26 / 44

A closer look at the Application rule

∆ ` t : (
∧n

i=1 θi)→ θ′
∆i ` u : θi ∀i ∈ {1, . . . , n}

Right
∧

∆1, . . . , ∆n ` u :
∧n

i=1 θi

∆, ∆1, . . . , ∆n ` t u : θ′

Linear decomposition of the intuitionistic arrow:

A⇒ B = ! A(B

Two steps: duplication / erasure, then linear use.

Right
∧

corresponds to the Promotion rule of indexed linear logic.
(see G.-Melliès, ITRS 2014)

Charles Grellois (AMU) Intro to HOMC June 20, 2019 27 / 44

Intersection types and semantics of linear logic

A⇒ B = ! A(B

Two interpretations of the exponential modality:

Qualitative models
(Scott semantics)

! A = Pfin(A)

[[o ⇒ o]] = Pfin(Q)× Q

{q0, q0, q1} = {q0, q1}

Order closure

Quantitative models
(Relational semantics)

! A = Mfin(A)

[[o ⇒ o]] = Mfin(Q)× Q

[q0, q0, q1] 6= [q0, q1]

Unbounded multiplicities

Charles Grellois (AMU) Intro to HOMC June 20, 2019 28 / 44

An example of interpretation

λx

λy

a q0

a q1

x q1x q1

a q0

y q1x q0

In Rel , one denotation:

([q0, q1, q1], [q1], q0)

In ScottL, a set
containing the principal
type

({q0, q1}, {q1}, q0)

but also

({q0, q1, q2}, {q1}, q0)

and

({q0, q1}, {q0, q1}, q0)

and . . .
Charles Grellois (AMU) Intro to HOMC June 20, 2019 29 / 44

Intersection types and semantics of linear logic

Rel!

Ehrhard

��

Bucciarelli−Ehrhard

de Carvalho
// Non-idempotent types

Ehrhard

��

oo

ScottL!
Ehrhard

Terui
// Idempotent typesoo

(Bucciarelli-Ehrhard 2001, de Carvalho 2009, Ehrhard 2012, Terui 2012)

Fundamental idea:

[[t]] ∼= { θ | ∅ ` t : θ }

for a closed term.

Charles Grellois (AMU) Intro to HOMC June 20, 2019 30 / 44

Intersection types and semantics of linear logic

Rel!

Ehrhard

��

Bucciarelli−Ehrhard

de Carvalho
// Non-idempotent types

Ehrhard

��

oo

ScottL!
Ehrhard

Terui
// Idempotent typesoo

Let t be a term normalizing to a tree 〈t〉 and A be an alternating
automaton.

A accepts 〈t〉 from q ⇔ q ∈ [[t]] ⇔ ∅ ` t : q :: o

(see Chapter 5)

Extension with recursion and parity condition?
Charles Grellois (AMU) Intro to HOMC June 20, 2019 30 / 44

Adding parity conditions
to the type system

Charles Grellois (AMU) Intro to HOMC June 20, 2019 31 / 44

Alternating parity tree automata
We add coloring annotations to intersection types:

δ(q0, if) = (2, q0) ∧ (2, q1)

now corresponds to

if : ∅ →
(
�Ω(q0) q0 ∧�Ω(q1) q1

)
→ q0

Idea: if is a run-tree with two holes:

if

[]q1[]q0

A new neutral (least) color: ε.

We refine the approach of Kobayashi and Ong in a modal way (see Chapter
6).

Charles Grellois (AMU) Intro to HOMC June 20, 2019 32 / 44

An example of colored intersection type

Set Ω(q0) = 0 and Ω(q1) = 1.

λx

λy

a q1

a q1

x q1x q1

a q0

y q1x q0

has now type
�0 q0 ∧�1 q1 → �1 q1 → q1

Note the color 0 on q0. . .

Charles Grellois (AMU) Intro to HOMC June 20, 2019 33 / 44

A type-system for verification (Grellois-Melliès 2014)

Axiom
x : �ε θi ` x : θi

{ (i , qij) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ

∅ ` a :
∧k1

j=1�Ω(q1j) q1j → . . . →
∧kn

j=1�Ω(qnj) qnj → q

∆ ` t : (�m1 θ1 ∧ · · · ∧�mk
θk)→ θ ∆i ` u : θiApp

∆ + �m1∆1 + . . . + �mk
∆k ` t u : θ

∆ , x :
∧

i∈I �mi θi ` t : θ
λ

∆ ` λ x . t :
(∧

i∈I �mi θi

)
→ θ

Γ ` R(F) : θ
fix

F : �ε θ ` F : θ

Charles Grellois (AMU) Intro to HOMC June 20, 2019 34 / 44

A type-system for verification
A colored Application rule:

∆ ` t : (�m1 θ1 ∧ · · · ∧�mk
θk)→ θ ∆i ` u : θiApp

∆ + �m1∆1 + . . . + �mk
∆k ` t u : θ

Charles Grellois (AMU) Intro to HOMC June 20, 2019 35 / 44

A type-system for verification
A colored Application rule:

∆ ` t : (�m1 θ1 ∧ · · · ∧�mk
θk)→ θ ∆i ` u : θiApp

∆ + �m1∆1 + . . . + �mk
∆k ` t u : θ

inducing a winning condition on infinite proofs: the node

∆i ` u : θi

has color mi , others have color ε, and we use the parity condition.

Charles Grellois (AMU) Intro to HOMC June 20, 2019 35 / 44

A type-system for verification

We now capture all MSO (see Chapter 6-8):

Theorem (G.-Melliès 2014, from Kobayashi-Ong 2009)
S : q0 ` S : q0 admits a winning typing derivation iff the alternating
parity automaton A has a winning run-tree over 〈G〉.

We obtain decidability by considering idempotent types.

Our reformulation
shows the modal nature of � (in the sense of S4),
internalizes the parity condition,
paves the way for semantic constructions.

Charles Grellois (AMU) Intro to HOMC June 20, 2019 36 / 44

Colored models of linear logic

Charles Grellois (AMU) Intro to HOMC June 20, 2019 37 / 44

A closer look at the Application rule

∆ ` t : (�m1 θ1 ∧ · · · ∧�mk
θk)→ θ ∆i ` u : θi

∆ + �m1∆1 + . . . + �mk
∆k ` t u : θ

could be decomposed as:

∆ ` t :
(∧k

i=1 �mi θi

)
→ θ

∆1 ` u : θ1
�m1 ∆1 ` u : �m1 θ1 . . .

∆k ` u : θk Right �
�mk

∆k ` u : �mk
θk Right

∧
�m1∆1, . . . , �mk

∆k ` u :
∧k

i=1 �mi θi

∆, �m1∆1, . . . , �mk
∆k ` t u : θ

Right � looks like a promotion. In linear logic:

A⇒ B = !�A(B

We show that the modality � distributes over the exponential in the
semantics.

Charles Grellois (AMU) Intro to HOMC June 20, 2019 38 / 44

Colored semantics

We extend:
Rel with countable multiplicities, coloring and an inductive-coinductive
fixpoint (Chapter 9)
ScottL with coloring and an inductive-coinductive fixpoint (Chapter
10).

Methodology: think in the relational semantics, and adapt to the Scott
semantics using Ehrhard’s 2012 result:

the finitary model ScottL is the extensional collapse of Rel .

Charles Grellois (AMU) Intro to HOMC June 20, 2019 39 / 44

Infinitary relational semantics

Extension of Rel with infinite multiplicities:

 A = Mcount(A)

and coloring modality (parametric comonad)

� A = Col × A

Composite comonad: = � is an exponential.

Induces a colored CCC Rel (→ model of the λ-calculus).

Charles Grellois (AMU) Intro to HOMC June 20, 2019 40 / 44

An example of interpretation
Set Ω(qi) = i .

λx

λy

a q1

a q1

x q1x q1

a q0

y q1x q0

has denotation

([(0, q0), (1, q1), (1, q1)], [(1, q1)], q1)

(corresponding to the type �0 q0 ∧�1 q1 → �1 q1 → q1)
Charles Grellois (AMU) Intro to HOMC June 20, 2019 41 / 44

Model-checking and infinitary semantics

Inductive-coinductive fixpoint operator: composes denotations w.r.t. the
parity condition.

Theorem
An APT A has a winning run from q0 over 〈G〉 if and only if

q0 ∈ [[λ(G)]]A

where λ(G) is a λY -term corresponding to G.

Conjecture
An APT A has a winning run from q0 over 〈G〉 if and only if

q0 ∈ [[λ(G)Σ]] ◦ [[δ†]]

where λ(G)Σ is a Church encoding of a λY -term corresponding to G.

Charles Grellois (AMU) Intro to HOMC June 20, 2019 42 / 44

Finitary semantics
In ScottL, we define �, λ and Y similarly (using downward-closures).
ScottL is a model of the λY -calculus.

Theorem
An APT A has a winning run from q0 over 〈G〉 if and only if

q0 ∈ [[λ(G)]].

Corollary
The local higher-order model-checking problem is decidable (and is
n-EXPTIME complete).

Theorem
The selection problem is decidable.

Charles Grellois (AMU) Intro to HOMC June 20, 2019 43 / 44

Perspectives

A purely coinductive proof of the soundness-and-completeness theorem

Accommodating the modal approach to other classes of automata

Understanding the infinitary semantics

Logical aspects: colored tensorial logic, fixpoints. . .

Game semantics interpretations?

Is the complexity related to light linear logics?

Extensional collapse between the two colored models?

Charles Grellois (AMU) Intro to HOMC June 20, 2019 44 / 44

