
Verification of (probabilistic) functional programs

Charles Grellois

Aix-Marseille Université

MABioS team seminar
June 3rd, 2019

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 1 / 49

Introduction

Type theory: allows to label parts of a program to prove properties
about it.

Model-checking: abstract a program as a model, and (try to) prove
automatically properties about it.

Both will meet in this talk, to allow the verification of functional
programs, in which functions can take functions as inputs.

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 2 / 49

Advantages of functional programs

Very mathematical: calculus of functions.

. . . and thus very much studied from a mathematical point of view.
This notably leads to strong typing, a marvellous feature.

Much less error-prone: no manipulation of global state.

More and more used, from Haskell and Caml to Scala, Javascript and even
Java 8 nowadays.

Also emerging for probabilistic programming.

Price to pay: analysis of higher-order constructs.

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 3 / 49

Advantages of functional programs

Price to pay: analysis of higher-order constructs.

Example of higher-order function: map.

map ϕ [0, 1, 2] returns [ϕ(0), ϕ(1), ϕ(2)].

Higher-order: map is a function taking a function ϕ as input.

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 4 / 49

Roadmap

1 A few words on the λ-calculus and an introduction to type systems

2 Intersection type systems for higher-order model-checking

3 Towards the verification of probabilistic programs

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 5 / 49

A few words on the λ-calculus

Definition, simply-typed fragment, towards intersection types

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 6 / 49

λ-terms

Grammar:

M, N ::= x
∣∣ λx .M

∣∣ M N

Calculus of functions:

x is a variable,

λx .M is intuitively a function x 7→ M,

M N is the application of functions.

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 7 / 49

λ-terms

Grammar:

M, N ::= x
∣∣ λx .M

∣∣ M N

Examples:

λx .x : identity x 7→ x ,

λx .y : constant function x 7→ y ,

(λx .x) y : application of the identity to y ,

∆ = λx .x x : duplication.

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 7 / 49

β-reduction

(λx .x) y

is an application of functions which should compute y :

(λx .x) y →β y

Beta-reduction gives the dynamics of the calculus.
(= the evaluation of the functions/programs).

This calculus is equivalent in expressive power, for functions N→ N, to
Turing machines.

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 8 / 49

β-reduction

Formally:

(λx .M) N →β M[x/N]

Examples:

(λx .y) z →β y

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 9 / 49

β-reduction

Formally:

(λx .M) N →β M[x/N]

Examples:

(λf .λx .f (f x)) (g g) y

→β (λx .g (g (g (g x)))) y

→β g (g (g (g y)))

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 9 / 49

The looping term Ω

Just like with Turing machines, there are computations that never stop.

Set Ω = ∆ ∆ = (λx .x x)(λx .x x).

Then:

Ω = (λx .x x)(λx .x x)

→β (x x) [x/λx .x x] = Ω

→β Ω

→β . . .

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 10 / 49

The looping term Ω

Just like with Turing machines, there are computations that never stop.
But that may depend on how we compute.

(λx .y) Ω →β y

if we reduce the first redex, or

(λx .y) Ω →β (λx .y) Ω

if we try to reduce the second (inside Ω). . .

Weak normalization: at least one way of computing terminates

Strong normalization (SN): all ways of computing terminate.

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 11 / 49

Simple types and strong normalization

Problem with Ω: it contains x x .
So x is at the same time a function and an argument of this function.

Simple types forbid this: you have to be a function A→ A or an argument
of type A, but not both.

It is enough to guarantee strong normalization:

M has a simple type ⇒ M is SN.

It’s an incomplete characterization: ∆ = λx .x x is SN (no way to reduce
it!) but not typable.
(simple typing is decidable, so it couldn’t be complete).

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 12 / 49

Simple types

Simple types: σ, τ ::= o
∣∣ σ → τ .

Γ, x : σ ` x : σ
Γ, x : σ ` M : τ

Γ ` λx .M : σ → τ

Γ ` M : σ → τ Γ ` N : σ
Γ ` M N : τ

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 13 / 49

Intersection types and strong normalization

A complete (and undecidable) characterization of SN: intersection types.

Now, λx . x x has type ((τ → τ) ∧ τ)→ τ for all (intersection) types τ . . .

A term is SN iff it is typable in an appropriate intersection type system. ∆
is typable, Ω isn’t.

Crucial feature: intersection type systems enjoy both subject reduction and
subject expansion.

In other words: typing is invariant by reduction. We’ll use that to do static
analysis!

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 14 / 49

Modeling functional programs

using higher-order

recursion schemes

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 15 / 49

Model-checking

Approximate the program −→ build a model M.

Then, formulate a logical specification ϕ over the model.

Aim: design a program which checks whether

M � ϕ.

That is, whether the model M meets the specification ϕ.

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 16 / 49

An example

Main = Listen Nil

Listen x = if end signal() then x
else Listen received data() :: x

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 17 / 49

An example

Main = Listen Nil

Listen x = if end signal() then x
else Listen received data()::x

A tree model:

if

if

if
...data

data

Nil

data

Nil

Nil

We abstracted conditionals and datatypes.
The approximation contains a non-terminating branch.

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 17 / 49

Finite representations of infinite trees

if

if

if
...data

data

Nil

data

Nil

Nil

is not regular: it is not the unfolding of a finite graph as

if

Nil if

data

Nil

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 18 / 49

Finite representations of infinite trees

if

if

if
...data

data

Nil

data

Nil

Nil

but it is represented by a higher-order recursion scheme (HORS).

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 18 / 49

Higher-order recursion schemes

Main = Listen Nil

Listen x = if end signal() then x
else Listen received data() :: x

is abstracted as

G =

{
S = L Nil

L x = if x (L (data x))

which represents the higher-order tree of actions

if

if
...data

Nil

Nil

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 19 / 49

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

Rewriting starts from the start symbol S:

S →G
L

Nil

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 20 / 49

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

L

Nil

→G

if

L

data

Nil

Nil

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 20 / 49

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

if

L

data

Nil

Nil

→G

if

if

L

data

data

Nil

data

Nil

Nil

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 20 / 49

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

〈G〉 =

if

if

if

...data

data

Nil

data

Nil

Nil

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 20 / 49

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

can be rewritten in λ-calculus style as

G =

{
S = L Nil

L = λx . if x (L (data x))

HORS can alternatively be seen as simply-typed λ-terms with

simply-typed recursion operators Yσ : (σ → σ)→ σ.

Note that, in general, arguments may be functions of functions of
functions. . .

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 20 / 49

Alternating parity tree automata

Checking specifications over trees

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 21 / 49

Monadic second order logic

MSO is a common logic in verification, allowing to express properties as:

“ all executions halt ”

“ a given operation is executed infinitely often in some execution ”

“ every time data is added to a buffer, it is eventually processed ”

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 22 / 49

Alternating parity tree automata

Checking whether a formula holds can be performed using an automaton.

For an MSO formula ϕ, there exists an equivalent APT Aϕ s.t.

〈G〉 � ϕ iff Aϕ has a run over 〈G〉.

APT = alternating tree automata (ATA) + parity condition.

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 23 / 49

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 24 / 49

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if

if

...data

data

Nil

data

Nil

Nil

−→Aϕ

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 24 / 49

Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

c1

c2

c3

c4

c5

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 25 / 49

Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ϕ:

Aϕ has a winning run-tree over 〈G〉 iff 〈G〉 � ϕ.

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 25 / 49

The higher-order model-checking problem

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 26 / 49

The (local) HOMC problem

Input: HORS G, formula ϕ.

Output: true if and only if 〈G〉 � ϕ.

Example: ϕ = “ there is an infinite execution ”

if

if

if
...data

data

Nil

data

Nil

Nil

Output: true.
Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 27 / 49

The (local) HOMC problem

Input: HORS G, formula ϕ.

Output: true if and only if 〈G〉 � ϕ.

Example: ϕ = “ there is an infinite execution ”

if

if

if
...data

data

Nil

data

Nil

Nil

Output: true.
Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 27 / 49

Our line of work
This problem is decidable (Ong 2006), and its complexity is n-EXPTIME
where n is the order of the HORS of interest.

But there are practical algorithms that work quite well!

Our contributions (with Melliès, Clairambault and Murawski):

A connection with linear logic and its models, based on a refinment of
an intersection type system and on a connection between intersection
types and linear logic

Explain why it works: in fact, complexity depends on the linear order
of the HORS

For this, we introduce a linear-nonlinear version of HORS and of
APT. This framework allows us to give simpler proofs of existing
results of HOMC, and allows to unify these existing approaches.

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 28 / 49

Intersection types and alternation

A first connection with linear logic

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 29 / 49

Alternating tree automata and intersection types

A key remark (Kobayashi 2009):

δ(q0, if) = (2, q0) ∧ (2, q1)

can be seen as the intersection typing

if : ∅ → (q0 ∧ q1)→ q0

refining the simple typing

if : o → o → o

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 30 / 49

Alternating tree automata and intersection types

In a derivation typing the tree if T1 T2 :

δ ∅ ` if : ∅ → (q0 ∧ q1)→ q0 ∅
App

∅ ` if T1 : (q0 ∧ q1)→ q0

...
∅ ` T2 : q0

...
∅ ` T2 : q1

App
∅ ` if T1 T2 : q0

Intersection types naturally lift to higher-order – and thus to G, which
finitely represents 〈G〉.

Theorem (Kobayashi 2009)

` G : q0 iff the ATA Aϕ has a run-tree over 〈G〉.

A form of static analysis!

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 31 / 49

A type-system for verification: without parity conditions

Axiom
x :

∧
{i} θi :: κ ` x : θi :: κ

{ (i , qij) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ

∅ ` a :
∧k1

j=1 q1j → . . . →
∧kn

j=1 qnj → q :: o → · · · → o

∆ ` t : (θ1 ∧ · · · ∧ θk)→ θ :: κ→ κ′ ∆i ` u : θi :: κ
App

∆ , ∆1 , . . . , ∆k ` t u : θ :: κ′

∆ , x :
∧

i∈I θi :: κ ` t : θ :: κ′

λ
∆ ` λ x . t :

(∧
i∈I θi

)
→ θ :: κ→ κ′

Γ ` R(F) : θ :: κ
fix

F : θ :: κ ` F : θ :: κ

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 32 / 49

A closer look at the Application rule

In the intersection type system:

∆ ` t : (θ1 ∧ · · · ∧ θn)→ θ ∆i ` u : θi
App

∆ , ∆1 , . . . , ∆n ` t u : θ

This rule could be decomposed as:

∆ ` t : (
∧n

i=1 θi)→ θ′
∆i ` u : θi ∀i ∈ {1, . . . , n}

Right
∧

∆1, . . . , ∆n ` u :
∧n

i=1 θi

∆, ∆1, . . . , ∆n ` t u : θ′

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 33 / 49

A closer look at the Application rule

In the intersection type system:

∆ ` t : (θ1 ∧ · · · ∧ θn)→ θ ∆i ` u : θi
App

∆ , ∆1 , . . . , ∆n ` t u : θ

This rule could be decomposed as:

∆ ` t : (
∧n

i=1 θi)→ θ′
∆i ` u : θi ∀i ∈ {1, . . . , n}

Right
∧

∆1, . . . , ∆n ` u :
∧n

i=1 θi

∆, ∆1, . . . , ∆n ` t u : θ′

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 33 / 49

A closer look at the Application rule

∆ ` t : (
∧n

i=1 θi)→ θ′
∆i ` u : θi ∀i ∈ {1, . . . , n}

Right
∧

∆1, . . . , ∆n ` u :
∧n

i=1 θi

∆, ∆1, . . . , ∆n ` t u : θ′

Linear decomposition of the intuitionistic arrow:

A⇒ B = ! A(B

Two steps: duplication / erasure, then linear use.

Right
∧

corresponds to the Promotion rule of indexed linear logic.
(see G.-Melliès, ITRS 2014)

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 34 / 49

Overview of our results

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 35 / 49

Automata and recognition
For the usual finite automata on words: given a regular language L ⊆ A∗,

there exists a finite automaton A recognizing L

if and only if. . .

there exists a finite monoid M, a subset K ⊆ M
and a homomorphism ϕ : A∗ → M such that L = ϕ−1(K).

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 36 / 49

Automata and recognition

The picture we want:

(after Aehlig 2006, Salvati 2009)

but with recursion and w.r.t. an APT.

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 37 / 49

Finitary semantics of linear logic

In ScottL (a finitary model of linear logic), we define �, λ and Y in an
appropriate way.
ScottL is a model of the λY -calculus.

Theorem

An APT A has a winning run from q0 over 〈G〉 if and only if

q0 ∈ [[λ(G)]].

Corollary

The local higher-order model-checking problem is decidable (and is
n-EXPTIME complete).

See Grellois-Melliès: CSL 2015, Fossacs 2015, MFCS 2015, and my thesis.

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 38 / 49

Linear order and the true complexity of HOMC

Clairambault, G., Murawski, POPL 2018: order isn’t the good measure for
complexity. We can use linear order.

Idea: when the automaton doesn’t use alternation, complexity doesn’t
increase that much. . .

A big advantage: allows to reprove several works on HOMC in a much
simpler way!

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 39 / 49

Probabilistic Termination

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 40 / 49

Motivations

Probabilistic programming languages are more and more pervasive in
computer science: modeling uncertainty, robotics, cryptography,
machine learning, AI. . .

Quantitative notion of termination: almost-sure termination (AST)

AST has been studied for imperative programs in the last years. . .

. . . but what about the functional probabilistic languages?

We introduce a monadic, affine sized type system sound for AST.

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 41 / 49

Sized types: the deterministic case

Simply-typed λ-calculus is strongly normalizing (SN).

Γ, x : σ ` x : σ
Γ, x : σ ` M : τ

Γ ` λx .M : σ → τ

Γ ` M : σ → τ Γ ` N : σ
Γ ` M N : τ

where σ, τ ::= o
∣∣ σ → τ .

Forbids the looping term Ω = (λx .x x)(λx .x x).

Strong normalization: all computations terminate.

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 42 / 49

Sized types: the deterministic case

Simply-typed λ-calculus is strongly normalizing (SN).

No longer true with the letrec construction. . .

Sized types: a decidable extension of the simple type system ensuring SN
for λ-terms with letrec.

See notably:

Hughes-Pareto-Sabry 1996, Proving the correctness of reactive
systems using sized types,

Barthe-Frade-Giménez-Pinto-Uustalu 2004, Type-based termination
of recursive definitions.

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 42 / 49

Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Idea: k successors = at most k constructors.

Nat̂i is 0,

Nat̂̂i is 0 or S 0,

. . .

Nat∞ is any natural number. Often denoted simply Nat.

The same for lists,. . .

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 43 / 49

Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Fixpoint rule:

Γ, f : Nati → σ ` M : Nat̂i → σ[i/̂i] i pos σ

Γ ` letrec f = M : Nats → σ[i/s]

“To define the action of f on size n + 1,
we only call recursively f on size at most n”

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 43 / 49

Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Fixpoint rule:

Γ, f : Nati → σ ` M : Nat̂i → σ[i/̂i] i pos σ

Γ ` letrec f = M : Nats → σ[i/s]

Sound for SN: typable ⇒ SN.

Decidable type inference (implies incompleteness).

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 43 / 49

Sized types: example in the deterministic case

From Barthe et al. (op. cit.):

The case rule ensures that the size of x ′ is lesser than the one of x .
Size decreases during recursive calls ⇒ SN.

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 44 / 49

A probabilistic λ-calculus

With Dal Lago, we studied a call-by-value λ-calculus extended with a
probabilistic choice operator.

We designed a type system, inspired from sized types, in which

typability ⇒ AST

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 45 / 49

Random walks as probabilistic terms

Biased random walk:

Mbias =
(

letrec f = λx .case x of
{

S→ λy .f (y)⊕ 2
3

(f (S S y)))
∣∣ 0→ 0

})
n
¯

Unbiased random walk:

Munb =
(

letrec f = λx .case x of
{

S→ λy .f (y)⊕ 1
2

(f (S S y)))
∣∣ 0→ 0

})
n
¯

∑
[[Mbias]] =

∑
[[Munb]] = 1

This is checked by our type system.

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 46 / 49

Another term

We also capture terms as:

Mnat =
(

letrec f = λx .x ⊕ 1
2

S (f x)
)

0

of semantics

[[Mnat]] =
{

(0)
1
2 , (S 0)

1
4 , (S S 0)

1
8 , . . .

}
summing to 1.

Remark that this recursive function generates the geometric distribution.

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 47 / 49

Probabilistic termination of probabilistic HORS

Termination analysis for functional programs, one more step:

Kobayashi - Dal Lago - Grellois, LICS 2019: a probabilistic extension of
HORS and approximate techniques for termination verification.

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 48 / 49

Conclusion

Type theory is perfectly fit to verify functional programs, by
considering appropriate type systems.

Type theory can be extended to accomodate the probabilistic setting.

Linear logic is very connected to intersection types, and allows to
consider more carefully the behavior of programs

Contributions: models of LL for HOMC, refinment of the complexity
measures, a new framework to carry proofs in HOMC, termination
analysis for probabilistic programs.

Thank you for your attention!

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 49 / 49

Conclusion

Type theory is perfectly fit to verify functional programs, by
considering appropriate type systems.

Type theory can be extended to accomodate the probabilistic setting.

Linear logic is very connected to intersection types, and allows to
consider more carefully the behavior of programs

Contributions: models of LL for HOMC, refinment of the complexity
measures, a new framework to carry proofs in HOMC, termination
analysis for probabilistic programs.

Thank you for your attention!

Charles Grellois (AMU) Verification of functional programs June 3rd, 2019 49 / 49

