
Verification of (probabilistic) functional programs

Charles Grellois

LIS, Aix-Marseille Université

April 9, 2020
Online seminar at PPS

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 1 / 51

In this talk. . .

Verification of deterministic functional programs by model-checking,
the model being higher-order recursion schemes (HORS)

Probabilistic functional programs: termination analysis as a first step
towards verification:

I using a type system

I using a model, probabilistic HORS (abbreviated as PHORS)

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 2 / 51

Higher-order programs, probabilistic programs

Higher-order (HO) : a function can take functions as inputs, which
can themselves take functions as inputs, and so on.

map ϕ [0, 1, 2] returns [ϕ(0), ϕ(1), ϕ(2)].

Probabilistic : a program’s behavior will depend on a probability (a
coin toss for example)

M ⊕p N → M with prob. p
→ N with prob. 1− p

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 3 / 51

Verifying HO programs

Several approaches. Among them:

Model-checking : approximate the program as a model, and check
whether this model satisfies a given specification using a systematic
algorithm

Type theory : we do not approximate the program, but we annotate
it, if we can, by informations allowing the verification of the program

We will have a look at both approaches for probabilistic analysis of
termination (a first step towards “full” verification).

Before that, let’s see we can do for the deterministic case.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 4 / 51

Modeling (deterministic)

functional programs using

higher-order recursion schemes

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 5 / 51

Model-checking

Approximate the program −→ build a model M.

Then, formulate a logical specification ϕ over the model.

Aim: design a program which checks whether

M � ϕ.

That is, whether the model M meets the specification ϕ.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 6 / 51

An example

Main = Listen Nil

Listen x = if end signal() then x
else Listen received data() :: x

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 7 / 51

An example

Main = Listen Nil

Listen x = if end signal() then x
else Listen received data()::x

A tree model:

if

if

if
...data

data

Nil

data

Nil

Nil

We abstracted conditionals and datatypes.
The approximation contains a non-terminating branch.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 7 / 51

Finite representations of infinite trees

if

if

if
...data

data

Nil

data

Nil

Nil

is not regular: it is not the unfolding of a finite graph as

if

Nil if

data

Nil

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 8 / 51

Finite representations of infinite trees

if

if

if
...data

data

Nil

data

Nil

Nil

but it is represented by a higher-order recursion scheme (HORS).

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 8 / 51

Higher-order recursion schemes

Main = Listen Nil

Listen x = if end signal() then x
else Listen received data() :: x

is abstracted as

G =

{
S = L Nil

L x = if x (L (data x))

which represents the higher-order tree of actions

if

if
...data

Nil

Nil

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 9 / 51

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

Rewriting starts from the start symbol S:

S →G
L

Nil

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 10 / 51

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

L

Nil

→G

if

L

data

Nil

Nil

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 10 / 51

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

if

L

data

Nil

Nil

→G

if

if

L

data

data

Nil

data

Nil

Nil

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 10 / 51

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

〈G〉 =

if

if

if

...data

data

Nil

data

Nil

Nil

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 10 / 51

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

can be rewritten in λ-calculus style as

G =

{
S = L Nil

L = λx . if x (L (data x))

HORS can alternatively be seen as simply-typed λ-terms with

simply-typed recursion operators Yσ : (σ → σ)→ σ.

Note that, in general, arguments may be functions of functions of
functions. . .

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 10 / 51

Alternating parity tree automata

Checking specifications over trees

A connection with linear logic

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 11 / 51

Monadic second order logic

MSO is a common logic in verification, allowing to express properties as:

“ all executions halt ”

“ a given operation is executed infinitely often in some execution ”

“ every time data is added to a buffer, it is eventually processed ”

MSO notably contains LTL, CTL, PDL. It is equivalent to the modal
µ-calculus over trees.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 12 / 51

Alternating parity tree automata

Checking whether a formula holds can be performed using an automaton.

For an MSO formula ϕ, there exists an equivalent APT Aϕ s.t.

〈G〉 � ϕ iff Aϕ has a run over 〈G〉.

APT = alternating tree automata (ATA) + parity condition.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 13 / 51

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

A connection with the exponential of linear logic. . .

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 14 / 51

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if

if

...data

data

Nil

data

Nil

Nil

−→Aϕ

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 14 / 51

Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

c1

c2

c3

c4

c5

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 15 / 51

Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ϕ:

Aϕ has a winning run-tree over 〈G〉 iff 〈G〉 � ϕ.

The coloring information will be interpreted using a modality added to
linear logic.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 15 / 51

The higher-order model-checking problem

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 16 / 51

The (local) HOMC problem

Input: HORS G, formula ϕ.

Output: true if and only if 〈G〉 � ϕ.

Example: ϕ = “ there is an infinite execution ”

if

if

if
...data

data

Nil

data

Nil

Nil

Output: true. Note that here we can notably investigate termination
properties.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 17 / 51

The (local) HOMC problem

Input: HORS G, formula ϕ.

Output: true if and only if 〈G〉 � ϕ.

Example: ϕ = “ there is an infinite execution ”

if

if

if
...data

data

Nil

data

Nil

Nil

Output: true. Note that here we can notably investigate termination
properties.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 17 / 51

Our line of work
This problem is decidable (Ong 2006), and its complexity is n-EXPTIME
where n is the order of the HORS of interest.

But there are practical algorithms that work quite well!

Our contributions (with Melliès, Clairambault and Murawski):

A connection with linear logic and its models, based on a refinment of
an intersection type system and on a connection between intersection
types and linear logic

Explain why it works: in fact, complexity depends on the linear order
of the HORS

For this, we introduce a linear-nonlinear version of HORS and of
APT. This framework allows us to give simpler proofs of existing
results of HOMC, and allows to unify these existing approaches.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 18 / 51

Overview of our results

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 19 / 51

Finitary semantics of linear logic

In ScottL (a finitary model of linear logic), we define �, λ (distributive
law) and Y in an appropriate way.
ScottL is a model of the λY -calculus.

Theorem

An APT A has a winning run from q0 over 〈G〉 if and only if

q0 ∈ [[λ(G)]].

Corollary

The local higher-order model-checking problem is decidable (and is
n-EXPTIME complete).

See Grellois-Melliès: CSL 2015, Fossacs 2015, MFCS 2015, and my thesis.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 20 / 51

Linear order and the true complexity of HOMC

Clairambault, G., Murawski, POPL 2018: order isn’t the good measure for
complexity. We can use the linear order.

Idea: when the automaton doesn’t use alternation, complexity doesn’t
increase that much. . .

We need to define extensions of HORS and APT: their linear versions.

A big advantage of this framework: allows to reprove several results on
HOMC in a much simpler way!

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 21 / 51

Linear Order

The linear order ò(κ) of a kind κ is defined inductively:

ò(o) = 0
ò($(ϕ) = max(ò($), ò(ϕ))
ò(ϕ→ ψ) = max(ò(ϕ) + 1, ò(ψ))
ò(&i∈Iϕi) = maxi∈I ò(ϕi)

while the standard notion of order over kinds κ ::= o | κ→ κ is:

ord(o) = 0
ord(ϕ→ ψ) = max(ord(ϕ) + 1, ord(ψ))

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 22 / 51

Linear Order

Theorem

Assume n ≥ 1. The time complexity of checking whether a LNAPTA
A = 〈Σ, Q, δ, q0, Ω〉 = 〈Σ,Q, δ, q0〉 accepts the value tree of a D-deep
LHORS G of linear order n is expn(O(poly(|Q||G|))). In particular, the
problem is n-EXPTIME complete.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 23 / 51

Three Applications

Recursive schemes over finite data domains (RSFD) extend HORS with a
finite data domain over which pattern-matching can be done.

A direct and elaborate proof exists (Kobayashi et al. 2010) that their MSO
model-checking is n-EXPTIME complete. The point is to embed RSFD in
usual HORS, but then the complexity becomes too high...

With our framework: a very simple translation to linear-nonlinear
λY -calculus, mapping a HORS of order n to a term of linear order n,
allows to obtain the result!

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 24 / 51

Three Applications

Higher-Order Recursion Schemes with Cases (Neatherway et al. 2012) are
similar to RSFD, but a bit more general.

Again, by a simple translation, we obtain the (previously known) result
that the MSO model-checking problem is n-EXPTIME complete. And we
are not impacted by increases of complexity coming from the translation.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 25 / 51

Three Applications

What about call-by-value programs? A 2014 analysis by Tsukada and
Kobayashi showed that reachability is n-EXPTIME complete for depth n
CBV programs (with recursion and non-determinism), where depth is an
adaptation of order to CBV.

They do not use a CPS to encode into usual HORS, because it would have
made the order (and thus the complexity) explode.

We use linear CPS to encode the problem into linear-nonlinear
λY -calculus and obtain again the n-EXPTIME completeness result directly
from our analysis of HOMC using linearity.

Our result is in fact slightly more general (resource verification in the spirit
of (Kobayashi 2009)).

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 26 / 51

Probabilistic Termination I:

Using Type Theory

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 27 / 51

Motivations

Probabilistic programming languages are more and more pervasive in
computer science: modeling uncertainty, robotics, cryptography,
machine learning, AI. . .

Quantitative notion of termination: almost-sure termination (AST)

AST has been studied for imperative programs in the last years. . .

. . . but what about the functional probabilistic languages?

We introduce a monadic, affine sized type system sound for AST.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 28 / 51

Sized types: the deterministic case

Simply-typed λ-calculus is strongly normalizing (SN).

Γ, x : σ ` x : σ
Γ, x : σ ` M : τ

Γ ` λx .M : σ → τ

Γ ` M : σ → τ Γ ` N : σ
Γ ` M N : τ

where σ, τ ::= o
∣∣ σ → τ .

Forbids the looping term Ω = (λx .x x)(λx .x x).

Strong normalization: all computations terminate.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 29 / 51

Sized types: the deterministic case

Simply-typed λ-calculus is strongly normalizing (SN).

No longer true with the letrec construction. . .

Sized types: a decidable extension of the simple type system ensuring SN
for λ-terms with letrec.

See notably:

Hughes-Pareto-Sabry 1996, Proving the correctness of reactive
systems using sized types,

Barthe-Frade-Giménez-Pinto-Uustalu 2004, Type-based termination
of recursive definitions.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 29 / 51

Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Idea: k successors = at most k constructors.

Nat̂i is 0,

Nat̂̂i is 0 or S 0,

. . .

Nat∞ is any natural number. Often denoted simply Nat.

The same for lists,. . .

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 30 / 51

Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Fixpoint rule:

Γ, f : Nati → σ ` M : Nat̂i → σ[i/̂i] i pos σ

Γ ` letrec f = M : Nats → σ[i/s]

“To define the action of f on size n + 1,
we only call recursively f on size at most n”

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 30 / 51

Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Fixpoint rule:

Γ, f : Nati → σ ` M : Nat̂i → σ[i/̂i] i pos σ

Γ ` letrec f = M : Nats → σ[i/s]

Sound for SN: typable ⇒ SN.

Decidable type inference (implies incompleteness).

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 30 / 51

A probabilistic λ-calculus

M, N, . . . ::= V
∣∣ V V

∣∣ let x = M in N
∣∣ M ⊕p N∣∣ case V of { S→W | 0→ Z }

V , W , Z , . . . ::= x
∣∣ 0

∣∣ S V
∣∣ λx .M ∣∣ letrec f = V

Formulation equivalent to λ-calculus with ⊕p, but constrained for
technical reasons (A-normal form)

Restriction to base type Nat for simplicity, but can be extended to
general inductive datatypes (as in sized types)

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 31 / 51

A probabilistic λ-calculus: operational semantics

let x = V in M →v

{
(M[x/V])1

}

(λx .M) V →v

{
(M[x/V])1

}

(letrec f = V)
(
c
−→
W
)
→v

{(
V [f / (letrec f = V)]

(
c
−→
W
))1

}

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 32 / 51

A probabilistic λ-calculus: operational semantics

case S V of {S→W | 0→ Z } →v

{
(W V)1

}

case 0 of { S→W | 0→ Z } →v

{
(Z)1

}

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 33 / 51

A probabilistic λ-calculus: operational semantics

M ⊕p N →v

{
Mp, N1−p }

M →v

{
Lpii

∣∣ i ∈ I
}

let x = M in N →v

{
(let x = Li in N)pi

∣∣ i ∈ I
}

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 34 / 51

A probabilistic λ-calculus: operational semantics

D
VD
=

{
M

pj
j

∣∣ j ∈ J
}

+ DV ∀j ∈ J, Mj →v Ej

D →v

(∑
j∈J pj · Ej

)
+ DV

For D a distribution of terms:

[[D]] = supn∈N
({

Dn

∣∣ D Vn
v Dn

})
where Vn

v is →n
v followed by projection on values.

We let [[M]] = [[
{
M1
}

]].

M is AST iff
∑

[[M]] = 1.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 35 / 51

Random walks as probabilistic terms

Biased random walk:

Mbias =
(

letrec f = λx .case x of
{

S→ λy .f (y)⊕ 2
3

(f (S S y)))
∣∣ 0→ 0

})
n
¯

Unbiased random walk:

Munb =
(

letrec f = λx .case x of
{

S→ λy .f (y)⊕ 1
2

(f (S S y)))
∣∣ 0→ 0

})
n
¯

∑
[[Mbias]] =

∑
[[Munb]] = 1

Capture this in a sized type system?

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 36 / 51

Another term

We also want to capture terms as:

Mnat =
(

letrec f = λx .x ⊕ 1
2

S (f x)
)

0

of semantics

[[Mnat]] =
{

(0)
1
2 , (S 0)

1
4 , (S S 0)

1
8 , . . .

}
summing to 1.

Remark that this recursive function generates the geometric distribution.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 37 / 51

Beyond SN terms, towards distribution types

First idea: extend the sized type system with:

Γ ` M : σ Γ ` N : σ
Choice

Γ ` M ⊕p N : σ

and “unify” types of M and N by subtyping.

Kind of product interpretation of ⊕: we can’t capture more than SN. . .

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 38 / 51

Beyond SN terms, towards distribution types

First idea: extend the sized type system with:

Γ ` M : σ Γ ` N : σ
Choice

Γ ` M ⊕p N : σ

and “unify” types of M and N by subtyping.

We get at best

f : Nat̂̂i → Nat∞ ` λy .f (y)⊕ 1
2

(f (S S y))) : Nat̂i → Nat∞

and can’t use a variation of the letrec rule on that.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 38 / 51

Beyond SN terms, towards distribution types

We will use distribution types, built as follows:

Γ |Θ ` M : µ Γ |Ψ ` N : ν {|µ |} = {| ν |}
Choice

Γ |Θ⊕p Ψ ` M ⊕p N : µ⊕p ν

Now

f :

{(
Nati → Nat∞

) 1
2 ,

(
Nat̂̂i → Nat∞

) 1
2

}
`

λy .f (y)⊕ 1
2

(f (S S y))) : Nat̂i → Nat∞

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 39 / 51

Designing the fixpoint rule

f :

{(
Nati → Nat∞

) 1
2 ,

(
Nat̂̂i → Nat∞

) 1
2

}
`

λy .f (y)⊕ 1
2

(f (S S y))) : Nat̂i → Nat∞

induces a random walk on N:

on n + 1, move to n with probability 1
2 , on n + 2 with probability 1

2 ,

on 0, loop.

The type system ensures that there is no recursive call from size 0.

Random walk AST (= reaches 0 with proba 1) ⇒ termination.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 40 / 51

Designing the fixpoint rule

{| Γ |} = Nat

i /∈ Γ and i positive in ν{
(Natsj → ν[i/sj])

pj
∣∣ j ∈ J

}
induces an AST sized walk

Γ | f :
{

(Natsj → ν[i/sj])
pj
∣∣ j ∈ J

}
` V : Nat̂i → ν[i/̂i]

LetRec
Γ | ∅ ` letrec f = V : Natr → ν[i/r]

Sized walk: AST is checked by an external PTIME procedure.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 40 / 51

Generalized random walks and the necessity of affinity

A crucial feature: our type system is affine.

Higher-order symbols occur at most once. Consider:

Mnaff = letrec f = λx .case x of
{

S→ λy .f (y)⊕ 2
3

(f (S S y) ; f (S S y))
∣∣ 0→ 0

}

The induced sized walk is AST.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 41 / 51

Generalized random walks and the necessity of affinity
Tree of recursive calls, starting from 1:

[1]

[2 2]

[2 3 3]

...

[2 1]

[2 2 2]

...

[2]

[3 3]

...

[1]

[2 2]

...

[0]

[0]

Leftmost edges have
probability 2

3 ;
rightmost ones 1

3 .

This random process
is not AST.

Problem:
modelisation by sized
walk only makes
sense for affine
programs.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 42 / 51

Key properties

A nice subject reduction property, and:

Theorem (Typing soundness)

If Γ |Θ ` M : µ, then M is AST.

Proof by reducibility, using set of candidates parametrized by probabilities.

See Dal Lago-Grellois ESOP 2017 and ACM TOPLAS 2019 (long version).

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 43 / 51

Probabilistic Termination II:

Using Probabilistic HORS

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 44 / 51

Termination analysis for PHORS

We extend HORS to probabilistic HORS (PHORS).
Example: random walk:

G =

{
S = F e

F x = x ⊕p F (F x)

Probabilistic reduction:

S
1−→ F e

R,1−p−−−−→ F (F e)
L,p−−→ F e

L,p−−→ e

has probability (1− p)× p2.

Termination probability: sum of the probabilites of the reductions from S
ending in e (after finitely many steps).

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 45 / 51

Contributions

Kobayashi, Dal Lago, Grellois, LICS 2019:

Definition of PHORS, of their operational semantics, relation with
recursive Markov chains. . .

(Un)Decidability results: several results among which the
undecidability of AST for order ≥ 2

A fixpoint characterization of the termination probability giving the
semi-decidability of the lower bound problem

A sound procedure (is it complete?) for computing an upper bound of
the termination probability for order-2 PHORS.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 46 / 51

(Un)decidability results

Unsolvability of Diophantine equations in terms of polynomials with
non-negative coefficients:

Given two polynomials P(x1; . . . ; xk) and Q(x1; . . . ; xk) with non-negative
integer coefficients, whether P(x1; . . . ; xk) < Q(x1; . . . ; xk) for some
x1; . . . ; xk ∈ N is undecidable.

Idea: show that for every P and Q as above, one can effectively construct
an order-2 PHORS that does not almost surely terminate if and only if
P(x1; . . . ; xk) < Q(x1; . . . ; xk) for some x1; . . . ; xk .

Start from order 3 (easier) then reduce to order 2 replacing Church
numerals with appropriate probabilistic functions.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 47 / 51

(Un)decidability results

It is also undecidable:

whether a given order-2 PHORS G satisfies Pr(G) ≥ r

whether a given order-2 PHORS G satisfies Pr(G) = r

Whether a given order-n PHORS G satisfies Pr(G) > r is semi-decidable.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 48 / 51

Fixpoint characterization

G =

{
S = F e

F x = x ⊕p F (F x)

becomes {
S = 1× F (1)

F (x) = px + (1− p)× F (F (x))

and {
S = p

1−p if 0 ≤ p ≤ 1
2

= 1 if 1
2 ≤ p ≤ 1

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 49 / 51

Fixpoint characterization

Order-n systems can be reduced to order-(n-1) systems (but no more).

The previous system can be reduced to ordinary (order-0) equations, see
the paper (Example 4.5).

The probability of termination can be expressed as a least fixpoint over
such systems of equations.

So, for the lower bound, we can have approximations by iteration.

Upper bound of a lfp?? roughly, approximate the function as a piecewise
affine function.

Also in the paper: experiments that work well, and two exemples of
incompleteness to be adressed in future work.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 50 / 51

Conclusions and perspectives
Finer measure of HOMC complexity

A (very incomplete) type system for checking whether a probabilistic
functional program is AST

First steps on PHORS termination

Some perspectives:

LTL model-checking for PHORS

A probabilistic modal mu-calculus for model-checking PHORS?

Extension of the approximation algorithm for PHORS termination
probabilites

A more complete type system for checking whether a probabilistic
program is AST

Thank you for your attention!

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 51 / 51

Conclusions and perspectives
Finer measure of HOMC complexity

A (very incomplete) type system for checking whether a probabilistic
functional program is AST

First steps on PHORS termination

Some perspectives:

LTL model-checking for PHORS

A probabilistic modal mu-calculus for model-checking PHORS?

Extension of the approximation algorithm for PHORS termination
probabilites

A more complete type system for checking whether a probabilistic
program is AST

Thank you for your attention!

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 51 / 51

