
Verification of (probabilistic) functional programs

Charles Grellois

LIS, Aix-Marseille Université
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In this talk. . .

Verification of deterministic functional programs by model-checking,
the model being higher-order recursion schemes (HORS)

Probabilistic functional programs: termination analysis as a first step
towards verification:

I using a type system

I using a model, probabilistic HORS (abbreviated as PHORS)
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Higher-order programs, probabilistic programs

Higher-order (HO) : a function can take functions as inputs, which
can themselves take functions as inputs, and so on.

map ϕ [0, 1, 2] returns [ϕ(0), ϕ(1), ϕ(2)].

Probabilistic : a program’s behavior will depend on a probability (a
coin toss for example)

M ⊕p N → M with prob. p
→ N with prob. 1− p
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Verifying HO programs

Several approaches. Among them:

Model-checking : approximate the program as a model, and check
whether this model satisfies a given specification using a systematic
algorithm

Type theory : we do not approximate the program, but we annotate
it, if we can, by informations allowing the verification of the program

We will have a look at both approaches for probabilistic analysis of
termination (a first step towards “full” verification).

Before that, let’s see we can do for the deterministic case.
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Modeling (deterministic)

functional programs using

higher-order recursion schemes
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Model-checking

Approximate the program −→ build a model M.

Then, formulate a logical specification ϕ over the model.

Aim: design a program which checks whether

M � ϕ.

That is, whether the model M meets the specification ϕ.
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An example

Main = Listen Nil

Listen x = if end signal() then x
else Listen received data() :: x
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An example

Main = Listen Nil

Listen x = if end signal() then x
else Listen received data()::x

A tree model:

if

if

if
...data

data

Nil

data

Nil

Nil

We abstracted conditionals and datatypes.
The approximation contains a non-terminating branch.
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Finite representations of infinite trees

if

if

if
...data

data

Nil

data

Nil

Nil

is not regular: it is not the unfolding of a finite graph as

if

Nil if

data

Nil
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Finite representations of infinite trees

if

if

if
...data

data

Nil

data

Nil

Nil

but it is represented by a higher-order recursion scheme (HORS).
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Higher-order recursion schemes

Main = Listen Nil

Listen x = if end signal() then x
else Listen received data() :: x

is abstracted as

G =

{
S = L Nil

L x = if x (L (data x ) )

which represents the higher-order tree of actions

if

if
...data

Nil

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

Rewriting starts from the start symbol S:

S →G
L

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

L

Nil

→G

if

L

data

Nil

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

if

L

data

Nil

Nil

→G

if

if

L

data

data

Nil

data

Nil

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

〈G〉 =

if

if

if

...data

data

Nil

data

Nil

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

can be rewritten in λ-calculus style as

G =

{
S = L Nil

L = λx . if x (L (data x ) )

HORS can alternatively be seen as simply-typed λ-terms with

simply-typed recursion operators Yσ : (σ → σ)→ σ.

Note that, in general, arguments may be functions of functions of
functions. . .
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Alternating parity tree automata

Checking specifications over trees

A connection with linear logic
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Monadic second order logic

MSO is a common logic in verification, allowing to express properties as:

“ all executions halt ”

“ a given operation is executed infinitely often in some execution ”

“ every time data is added to a buffer, it is eventually processed ”

MSO notably contains LTL, CTL, PDL. It is equivalent to the modal
µ-calculus over trees.

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 12 / 51



Alternating parity tree automata

Checking whether a formula holds can be performed using an automaton.

For an MSO formula ϕ, there exists an equivalent APT Aϕ s.t.

〈G〉 � ϕ iff Aϕ has a run over 〈G〉.

APT = alternating tree automata (ATA) + parity condition.
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Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

A connection with the exponential of linear logic. . .

Charles Grellois (AMU) Verification of (prob.) functional programs Apr 9, 2020 14 / 51



Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if

if

...data

data

Nil

data

Nil

Nil

−→Aϕ

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil
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Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

c1

c2

c3

c4

c5
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Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ϕ:

Aϕ has a winning run-tree over 〈G〉 iff 〈G〉 � ϕ.

The coloring information will be interpreted using a modality added to
linear logic.
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The higher-order model-checking problem
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The (local) HOMC problem

Input: HORS G, formula ϕ.

Output: true if and only if 〈G〉 � ϕ.

Example: ϕ = “ there is an infinite execution ”

if

if

if
...data

data

Nil

data

Nil

Nil

Output: true. Note that here we can notably investigate termination
properties.
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Output: true if and only if 〈G〉 � ϕ.
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if

if

if
...data

data

Nil

data

Nil

Nil

Output: true. Note that here we can notably investigate termination
properties.
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Our line of work
This problem is decidable (Ong 2006), and its complexity is n-EXPTIME
where n is the order of the HORS of interest.

But there are practical algorithms that work quite well!

Our contributions (with Melliès, Clairambault and Murawski):

A connection with linear logic and its models, based on a refinment of
an intersection type system and on a connection between intersection
types and linear logic

Explain why it works: in fact, complexity depends on the linear order
of the HORS

For this, we introduce a linear-nonlinear version of HORS and of
APT. This framework allows us to give simpler proofs of existing
results of HOMC, and allows to unify these existing approaches.
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Overview of our results
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Finitary semantics of linear logic

In ScottL (a finitary model of linear logic), we define �, λ (distributive
law) and Y in an appropriate way.
ScottL   is a model of the λY -calculus.

Theorem

An APT A has a winning run from q0 over 〈G〉 if and only if

q0 ∈ [[λ(G)]].

Corollary

The local higher-order model-checking problem is decidable (and is
n-EXPTIME complete).

See Grellois-Melliès: CSL 2015, Fossacs 2015, MFCS 2015, and my thesis.
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Linear order and the true complexity of HOMC

Clairambault, G., Murawski, POPL 2018: order isn’t the good measure for
complexity. We can use the linear order.

Idea: when the automaton doesn’t use alternation, complexity doesn’t
increase that much. . .

We need to define extensions of HORS and APT: their linear versions.

A big advantage of this framework: allows to reprove several results on
HOMC in a much simpler way!
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Linear Order

The linear order ò(κ) of a kind κ is defined inductively:

ò(o) = 0
ò($( ϕ) = max( ò($), ò(ϕ))
ò(ϕ→ ψ) = max( ò(ϕ) + 1, ò(ψ))
ò(&i∈Iϕi ) = maxi∈I ò(ϕi )

while the standard notion of order over kinds κ ::= o | κ→ κ is:

ord(o) = 0
ord(ϕ→ ψ) = max(ord(ϕ) + 1, ord(ψ))
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Linear Order

Theorem

Assume n ≥ 1. The time complexity of checking whether a LNAPTA
A = 〈Σ, Q, δ, q0, Ω〉 = 〈Σ,Q, δ, q0〉 accepts the value tree of a D-deep
LHORS G of linear order n is expn(O(poly(|Q||G|))). In particular, the
problem is n-EXPTIME complete.
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Three Applications

Recursive schemes over finite data domains (RSFD) extend HORS with a
finite data domain over which pattern-matching can be done.

A direct and elaborate proof exists (Kobayashi et al. 2010) that their MSO
model-checking is n-EXPTIME complete. The point is to embed RSFD in
usual HORS, but then the complexity becomes too high...

With our framework: a very simple translation to linear-nonlinear
λY -calculus, mapping a HORS of order n to a term of linear order n,
allows to obtain the result!
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Three Applications

Higher-Order Recursion Schemes with Cases (Neatherway et al. 2012) are
similar to RSFD, but a bit more general.

Again, by a simple translation, we obtain the (previously known) result
that the MSO model-checking problem is n-EXPTIME complete. And we
are not impacted by increases of complexity coming from the translation.
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Three Applications

What about call-by-value programs? A 2014 analysis by Tsukada and
Kobayashi showed that reachability is n-EXPTIME complete for depth n
CBV programs (with recursion and non-determinism), where depth is an
adaptation of order to CBV.

They do not use a CPS to encode into usual HORS, because it would have
made the order (and thus the complexity) explode.

We use linear CPS to encode the problem into linear-nonlinear
λY -calculus and obtain again the n-EXPTIME completeness result directly
from our analysis of HOMC using linearity.

Our result is in fact slightly more general (resource verification in the spirit
of (Kobayashi 2009)).
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Probabilistic Termination I:

Using Type Theory
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Motivations

Probabilistic programming languages are more and more pervasive in
computer science: modeling uncertainty, robotics, cryptography,
machine learning, AI. . .

Quantitative notion of termination: almost-sure termination (AST)

AST has been studied for imperative programs in the last years. . .

. . . but what about the functional probabilistic languages?

We introduce a monadic, affine sized type system sound for AST.
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Sized types: the deterministic case

Simply-typed λ-calculus is strongly normalizing (SN).

Γ, x : σ ` x : σ
Γ, x : σ ` M : τ

Γ ` λx .M : σ → τ

Γ ` M : σ → τ Γ ` N : σ
Γ ` M N : τ

where σ, τ ::= o
∣∣ σ → τ .

Forbids the looping term Ω = (λx .x x)(λx .x x).

Strong normalization: all computations terminate.
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Sized types: the deterministic case

Simply-typed λ-calculus is strongly normalizing (SN).

No longer true with the letrec construction. . .

Sized types: a decidable extension of the simple type system ensuring SN
for λ-terms with letrec.

See notably:

Hughes-Pareto-Sabry 1996, Proving the correctness of reactive
systems using sized types,

Barthe-Frade-Giménez-Pinto-Uustalu 2004, Type-based termination
of recursive definitions.
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Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Idea: k successors = at most k constructors.

Nat̂i is 0,

Nat̂̂i is 0 or S 0,

. . .

Nat∞ is any natural number. Often denoted simply Nat.

The same for lists,. . .
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Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Fixpoint rule:

Γ, f : Nati → σ ` M : Nat̂i → σ[i/̂i] i pos σ

Γ ` letrec f = M : Nats → σ[i/s]

“To define the action of f on size n + 1,
we only call recursively f on size at most n”
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Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Fixpoint rule:

Γ, f : Nati → σ ` M : Nat̂i → σ[i/̂i] i pos σ

Γ ` letrec f = M : Nats → σ[i/s]

Sound for SN: typable ⇒ SN.

Decidable type inference (implies incompleteness).
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A probabilistic λ-calculus

M, N, . . . ::= V
∣∣ V V

∣∣ let x = M in N
∣∣ M ⊕p N∣∣ case V of { S→W | 0→ Z }

V , W , Z , . . . ::= x
∣∣ 0

∣∣ S V
∣∣ λx .M ∣∣ letrec f = V

Formulation equivalent to λ-calculus with ⊕p, but constrained for
technical reasons (A-normal form)

Restriction to base type Nat for simplicity, but can be extended to
general inductive datatypes (as in sized types)
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A probabilistic λ-calculus: operational semantics

let x = V in M →v

{
(M[x/V ])1

}

(λx .M) V →v

{
(M[x/V ])1

}

(letrec f = V )
(
c
−→
W
)
→v

{(
V [f / (letrec f = V )]

(
c
−→
W
))1

}
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A probabilistic λ-calculus: operational semantics

case S V of {S→W | 0→ Z } →v

{
(W V )1

}

case 0 of { S→W | 0→ Z } →v

{
(Z )1

}
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A probabilistic λ-calculus: operational semantics

M ⊕p N →v

{
Mp, N1−p }

M →v

{
Lpii

∣∣ i ∈ I
}

let x = M in N →v

{
(let x = Li in N)pi

∣∣ i ∈ I
}
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A probabilistic λ-calculus: operational semantics

D
VD
=

{
M

pj
j

∣∣ j ∈ J
}

+ DV ∀j ∈ J, Mj →v Ej

D →v

(∑
j∈J pj · Ej

)
+ DV

For D a distribution of terms:

[[ D ]] = supn∈N
({

Dn

∣∣ D Vn
v Dn

})
where Vn

v is →n
v followed by projection on values.

We let [[M ]] = [[
{
M1
}

]].

M is AST iff
∑

[[M ]] = 1.
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Random walks as probabilistic terms

Biased random walk:

Mbias =
(

letrec f = λx .case x of
{

S→ λy .f (y)⊕ 2
3

(f (S S y)))
∣∣ 0→ 0

})
n
¯

Unbiased random walk:

Munb =
(

letrec f = λx .case x of
{

S→ λy .f (y)⊕ 1
2

(f (S S y)))
∣∣ 0→ 0

})
n
¯

∑
[[Mbias ]] =

∑
[[Munb ]] = 1

Capture this in a sized type system?
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Another term

We also want to capture terms as:

Mnat =
(

letrec f = λx .x ⊕ 1
2

S (f x)
)

0

of semantics

[[Mnat ]] =
{

(0)
1
2 , (S 0)

1
4 , (S S 0)

1
8 , . . .

}
summing to 1.

Remark that this recursive function generates the geometric distribution.
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Beyond SN terms, towards distribution types

First idea: extend the sized type system with:

Γ ` M : σ Γ ` N : σ
Choice

Γ ` M ⊕p N : σ

and “unify” types of M and N by subtyping.

Kind of product interpretation of ⊕: we can’t capture more than SN. . .
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Beyond SN terms, towards distribution types

First idea: extend the sized type system with:

Γ ` M : σ Γ ` N : σ
Choice

Γ ` M ⊕p N : σ

and “unify” types of M and N by subtyping.

We get at best

f : Nat̂̂i → Nat∞ ` λy .f (y)⊕ 1
2

(f (S S y))) : Nat̂i → Nat∞

and can’t use a variation of the letrec rule on that.
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Beyond SN terms, towards distribution types

We will use distribution types, built as follows:

Γ |Θ ` M : µ Γ |Ψ ` N : ν {|µ |} = {| ν |}
Choice

Γ |Θ⊕p Ψ ` M ⊕p N : µ⊕p ν

Now

f :

{(
Nati → Nat∞

) 1
2 ,

(
Nat̂̂i → Nat∞

) 1
2

}
`

λy .f (y)⊕ 1
2

(f (S S y))) : Nat̂i → Nat∞
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Designing the fixpoint rule

f :

{(
Nati → Nat∞

) 1
2 ,

(
Nat̂̂i → Nat∞

) 1
2

}
`

λy .f (y)⊕ 1
2

(f (S S y))) : Nat̂i → Nat∞

induces a random walk on N:

on n + 1, move to n with probability 1
2 , on n + 2 with probability 1

2 ,

on 0, loop.

The type system ensures that there is no recursive call from size 0.

Random walk AST (= reaches 0 with proba 1) ⇒ termination.
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Designing the fixpoint rule

{| Γ |} = Nat

i /∈ Γ and i positive in ν{
(Natsj → ν[i/sj ])

pj
∣∣ j ∈ J

}
induces an AST sized walk

Γ | f :
{

(Natsj → ν[i/sj ])
pj
∣∣ j ∈ J

}
` V : Nat̂i → ν[i/̂i]

LetRec
Γ | ∅ ` letrec f = V : Natr → ν[i/r]

Sized walk: AST is checked by an external PTIME procedure.
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Generalized random walks and the necessity of affinity

A crucial feature: our type system is affine.

Higher-order symbols occur at most once. Consider:

Mnaff = letrec f = λx .case x of
{

S→ λy .f (y)⊕ 2
3

(f (S S y) ; f (S S y))
∣∣ 0→ 0

}

The induced sized walk is AST.
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Generalized random walks and the necessity of affinity
Tree of recursive calls, starting from 1:

[1]

[2 2]

[2 3 3]

...

[2 1]

[2 2 2]

...

[2]

[3 3]

...

[1]

[2 2]

...

[0]

[0]

Leftmost edges have
probability 2

3 ;
rightmost ones 1

3 .

This random process
is not AST.

Problem:
modelisation by sized
walk only makes
sense for affine
programs.
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Key properties

A nice subject reduction property, and:

Theorem (Typing soundness)

If Γ |Θ ` M : µ, then M is AST.

Proof by reducibility, using set of candidates parametrized by probabilities.

See Dal Lago-Grellois ESOP 2017 and ACM TOPLAS 2019 (long version).
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Probabilistic Termination II:

Using Probabilistic HORS
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Termination analysis for PHORS

We extend HORS to probabilistic HORS (PHORS).
Example: random walk:

G =

{
S = F e

F x = x ⊕p F ( F x )

Probabilistic reduction:

S
1−→ F e

R,1−p−−−−→ F (F e)
L,p−−→ F e

L,p−−→ e

has probability (1− p)× p2.

Termination probability: sum of the probabilites of the reductions from S
ending in e (after finitely many steps).
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Contributions

Kobayashi, Dal Lago, Grellois, LICS 2019:

Definition of PHORS, of their operational semantics, relation with
recursive Markov chains. . .

(Un)Decidability results: several results among which the
undecidability of AST for order ≥ 2

A fixpoint characterization of the termination probability giving the
semi-decidability of the lower bound problem

A sound procedure (is it complete?) for computing an upper bound of
the termination probability for order-2 PHORS.
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(Un)decidability results

Unsolvability of Diophantine equations in terms of polynomials with
non-negative coefficients:

Given two polynomials P(x1; . . . ; xk) and Q(x1; . . . ; xk) with non-negative
integer coefficients, whether P(x1; . . . ; xk) < Q(x1; . . . ; xk) for some
x1; . . . ; xk ∈ N is undecidable.

Idea: show that for every P and Q as above, one can effectively construct
an order-2 PHORS that does not almost surely terminate if and only if
P(x1; . . . ; xk) < Q(x1; . . . ; xk) for some x1; . . . ; xk .

Start from order 3 (easier) then reduce to order 2 replacing Church
numerals with appropriate probabilistic functions.
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(Un)decidability results

It is also undecidable:

whether a given order-2 PHORS G satisfies Pr(G) ≥ r

whether a given order-2 PHORS G satisfies Pr(G) = r

Whether a given order-n PHORS G satisfies Pr(G) > r is semi-decidable.
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Fixpoint characterization

G =

{
S = F e

F x = x ⊕p F ( F x )

becomes {
S = 1× F (1)

F (x) = px + (1− p)× F (F (x))

and {
S = p

1−p if 0 ≤ p ≤ 1
2

= 1 if 1
2 ≤ p ≤ 1
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Fixpoint characterization

Order-n systems can be reduced to order-(n-1) systems (but no more).

The previous system can be reduced to ordinary (order-0) equations, see
the paper (Example 4.5).

The probability of termination can be expressed as a least fixpoint over
such systems of equations.

So, for the lower bound, we can have approximations by iteration.

Upper bound of a lfp?? roughly, approximate the function as a piecewise
affine function.

Also in the paper: experiments that work well, and two exemples of
incompleteness to be adressed in future work.
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Conclusions and perspectives
Finer measure of HOMC complexity

A (very incomplete) type system for checking whether a probabilistic
functional program is AST

First steps on PHORS termination

Some perspectives:

LTL model-checking for PHORS

A probabilistic modal mu-calculus for model-checking PHORS?

Extension of the approximation algorithm for PHORS termination
probabilites

A more complete type system for checking whether a probabilistic
program is AST

Thank you for your attention!
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