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Model-checking higher-order programs

For higher-order programs with recursion, the model M of interest is a
higher-order regular tree.

Example:

Main = Listen Nil

Listen x = if end then x else Listen (data x)

modelled as

if
/\
Nil if
/\
data if
\
Nil data
\
data
\
Nil
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higher-order regular tree.

Example:

Main = Listen Nil

Listen x = if end then x else Listen (data x)

modelled as

if
/\
Nil if
da(\if How to represent this tree finitely?
\
Nil data
\
data
\
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Model-checking higher-order programs

For higher-order programs with recursion, the model M of interest is a
higher-order regular tree

over which we run
an alternating parity tree automaton (APT) A,
corresponding to a

monadic second-order logic (MSO) formula ¢.

(safety, liveness properties, etc)

Can we decide whether a higher-order regular tree satisfies a MSO
formula?
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Higher-order recursion schemes

Some regularity for infinite trees
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Higher-order recursion schemes

Main = Listen Nil
if end then x else Listen (data x)

Listen x

is abstracted as

g:

S = L Nil
L x = if x (L (data x))

which produces (how ?) the higher-order tree of actions

if
/\
Nl if
data :
\
Nil
Semantics of linear logic and model-checking March 14, 2016
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Higher-order recursion schemes

G - s = LNl
B L x = if x (L (data x))

Rewriting starts from the start symbol S:

Nil
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Higher-order recursion schemes

S = L Nil
g = ,
L x = if x (L (data x))
if
L Nil L
g |
Nil data
Nil

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking



Higher-order recursion schemes

S = L Nil
g = .
L x = if x (L (data x))
if
Nil if

it /N
/\ data L

Nil L \ \
| N Nil data

data ‘
‘ data

Nil \
Nil
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Higher-order recursion schemes

g _ S = LNl
B L x = if x (L (data x))
if
TN
Nil if
/\
data if
G = A
Nil data :
|
data
|
Nil
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Higher-order recursion schemes

G - s = LNl
B L x = if x (L (data x))

“Everything” is simply-typed, and
well-typed programs can't go too wrong:

we can detect productivity, and enforce it (replace divergence by outputing
a distinguished symbol € in one step).
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Higher-order recursion schemes

G - s = LNl
B L x = if x (L (data x))

“Everything” is simply-typed, and
well-typed programs can't go too wrong:

we can detect productivity, and enforce it (replace divergence by outputing
a distinguished symbol € in one step).

HORS can alternatively be seen as simply-typed A-terms with

simply-typed recursion operators Y, : (0 = 0) — 0.
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Alternating parity tree automata
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Alternating parity tree automata

For a MSO formula ¢,

G F o

iff an equivalent APT A, has a run over (G).

APT = alternating tree automata (ATA) + parity condition.
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Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: 0(qo,1f) = (2,90) A (2,q1).
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Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: 6(qo.if) = (2,90) A (2, q1).

if qo if qo
/\ /\
Nil if if qo if g1
data if data if data if
VAT VAR A
Nil data : Nil data : Nil data :
| | |
data data data
| | |
Nil Nil Nil
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Alternating parity tree automata

MSO discriminates inductive from coinductive behaviour.
This allows to express properties as
“a given operation is executed infinitely often in some execution”

or

“after a read operation, a write eventually occurs”.
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Alternating parity tree automata

Each state of an APT is attributed a color

Q(q) € Col CN

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

a
(e)

a3

C4
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Alternating parity tree automata

Each state of an APT is attributed a color

Q(q) € Col CN

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ¢:

Ay has a winning run-tree over (G) iff (G) E ¢.
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Recognition by homomorphism
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Automata and recognition

For the usual finite automata on words: given a regular language L C A*,
there exists a finite automaton A recognizing L

if and only if
there exists a finite monoid M, a subset K C M

and a homomorphism ¢ : A* — M such that L = ¢~ 1(K).

Roughly speaking: there exists a finite algebraic structure in which the
language is interpreted.

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking March 14, 2016 12 / 40



Automata and recognition

Let's extend this to:

@ higher-order recursion schemes

@ alternating parity automata

using domains (Aehlig 2006, Salvati 2009).

How to model. ..
@ Alternation?
@ Recursion?

e Parity condition?
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Intersection types and alternation
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Alternating tree automata and intersection types

A key remark (Kobayashi 2009):
6(qo,1f) = (2,90) A (2, q1)
can be seen as the intersection typing
if : 0= (90N q1) — qo
refining the simple typing

if : o—>0—0

(this talk is NOT about filter models!)
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Alternating tree automata and intersection types

In a derivation typing if T; T :

)
App

(Z)I—if:(Z)—>(q0/\q1)—>qo 0

O 3if T3 : (goAq1) = Qo M1 = T2t qo o To:qr

A
PP lo1, Too Fif T1 To 1 qo

Intersection types naturally lift to higher-order — and thus to G, which
finitely represents (G).

Theorem (Kobayashi)
S:aqgFS:q iff the ATA A, has a run-tree over (G). J

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking March 14, 2016 16 / 40



A type-system for verification: without parity conditions

Axiom XI/\{i} 0k F x:0; 2k

{(i,qi) 11 <i<n1<j<k} satisfies da(q,a)

k Kn .
OFa: ALy gy = oo > A2y @nj 2> g0 —o0

AbFt: (b6 A ANO)—0 k=K ANFu:b ok
A, A, ... A B tu: 0K

App

A, x N 0
A )\X.t.( Nici 0i)) =0 k—w

Kk F ot 0K
)

NrN-R(F): 0k
F:0:rxkFF:0:k

fix
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A closer look at the Application rule

AbFt: (6 A ANO)—0 k=K Aibu:b:

A
PP A AL, ... . Dp F tu:60:r/

Towards sequent calculus:

A F w0 Yie{l,...n}

Abt: (A 6)—0 Ay, D, Fou: N6

AA,..., A, F tu: 0

Right A
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A closer look at the Application rule

A w0 Vie{l,...n}
AF t:(Ny0)—=0 A Bgk u: A6
AN, A, F tu: 0

Right A

Linear decomposition of the intuitionnistic arrow:

A=B = 1A—8B

Two steps: duplication / erasure, then linear use.

Right /\ corresponds to the Promotion rule of indexed linear logic.
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Intersection types and semantics of linear logic

A=B =1A—8B

Two interpretations of the exponential modality:

Qualitative models Quantitative models

(Scott semantics) (Relational semantics)

1A = Psi(A) LA = Mjgn(A)

[o= o] = Phin(Q) x Q [o= o] = M#(Q) x Q

{90, 90, g1} = {qo, q1} [q0, o, q1] # [qo0, q1]

Order closure Unbounded multiplicities
Charles Grellois (IRIF - Bologna) (SIS S e SR AR March 14, 2016
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An example of interpretation
In Rel, one denotation:

([q0: a1, q1], [q1], qo)

In Scottl, a set

AX containing the principal
‘ type
Ay
‘ ({q07 CI1}7 {CI1}, qO)
a4 Qo but also
a qo a q ({qo0, 91, a2}, {a1}, q0)
/\ /\ and

X qo ¥y qi X q1 X Q1

({qo, a1}, {90, g1}, q0)

and ...
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Intersection types and semantics of linear logic

Rel Bucciareli—Ehrhard Non-idempotent types
! de Carvalho P ypP
Ehrhard Ehrhard
Ehrhard
Scottl, ek Idempotent types

Terui
Fundamental idea:

[t] = {6|0F t:0}

for a closed term.

March 14, 2016
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Intersection types and semantics of linear logic

Bucciareli— Ehrhard

Rel Non-idem n
el o Corvalo on-idempotent types
Ehrhard Ehrhard
Ehrhard
Scottl, T Idempotent types

Let ¢ be a term normalizing to a tree (t) and A be an alternating
automaton.

A accepts (t) fromqg < qeft] & 0 F t:q:o

Extension with recursion and parity condition?
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Adding parity conditions
to the type system
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Alternating parity tree automata

We add coloring annotations to intersection types:

5(q07 if) = (27 qO) N (27 ql)

now corresponds to

if = 0 — (Uagg) 90 A Dagg,) 91) — 9o

Idea: if is a run-tree with two holes:
if
—

[Jaoo e

A new neutral color: € for an empty run-tree context [].
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An example of colored intersection type

Set Q(gi) = i.

AX

Jy

a |CI1

/\
a qo a q
X q/oy\ql X q/lx\fh

has type

LogoAUi1gr —Uigr — q1

Note the color 0 on qg. ..
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A type-system for verification (Grellois-Mellies 2014)

Axiom X:/\{’-}DEH,' Tk B ox:10 kK

{(i,qi) | 1 <i<n1<j<k} satisfies 0a(q,a)

k kn
OFa: AlLiUogy) aij = - = AiZi1Uag,) Gy > g o= =00

AbFt:(Op 01 A A0y, 0k) =0 2 k=K Ajbu:6 ok
A+ O+ oo+ 00,0 B tu: 0w

App

Fr-R(F):0: &k
F:0.0:kkEF:0:k

fix

A, x i Ng Um0 in Bt 0w
A Ax.t: (Ng Om 0) >0 5 —w
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A type-system for verification

A colored Application rule:

AFt: (0O 00 A---ANOg 0k) =0 2 k—r  AjFu:6;

App ]
A+0O,A1 + ... +0, A B tu:0: K

inducing a winning condition on infinite proofs: the node
AiFu:0 K

has color c;, others have color €, and we use the parity condition.
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A type-system for verification

We now capture all MSO:

Theorem (G.-Mellies 2014, from Kobayashi-Ong 2009)

S :qo S : qo admits a winning typing derivation iff the alternating
parity automaton A has a winning run-tree over (G).

We obtain decidability by considering idempotent types.

Non-idempotency is very helpful for proofs, but leads to infinitary
constructions.
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Colored models of linear logic
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A closer look at the Application rule

AFt:(Op 01 Ao Ay, 0k) 20 2 k=K Ajbu:6 ok
A+ 0O+ oo+ 00,0 B tu: 0w

Towards sequent calculus:

ArlFu: 6 Antu: 6, )
Om 81 F 4 O 01 Om, Ap = v Oy, 01 Elg:t/[j\
i
At t:(AiLy Om 0) =0 OmA1, oy Om By F v s Ay Oy 0 g

A, OpAq, oo, Op,Ap B tu 6

Right [J looks like a promotion. In linear logic:

A=B = IUA—B

Our reformulation of the Kobayashi-Ong type system shows that [ is a

modality (in the sense of S4) which distributes with the exponential in the
semantics.
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Colored semantics

We extend:

@ Rel with countable multiplicites, coloring and an
inductive-coinductive fixpoint

@ Scottl with coloring and an inductive-coinductive fixpoint.

Methodology: think in the relational semantics, and adapt to the Scott
semantics using Ehrhard’s 2012 result:

the finitary model ScottL is the extensional collapse of Rel.

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking March 14, 2016 31/ 40



Infinitary relational semantics

Extension of Rel with infinite multiplicities:

é A Mcount(A)
and coloring modality
OA = ColxA
Distributive law:
A = 40A=0O4A

{([(c,a1), (c,a2),...],(c, [a1, a2,...])) | ai € A, c € Col}

Allows to compose comonads: 4 = 4 [ is an exponential in the infinitary
relational semantics.

This induces a colored CCC Rel; (— model of the A-calculus).
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An example of interpretation

Set Q(q;) = i.
AX
y
a q
/\
a dqo a qi

X qo Yy g1 X q1 X qi

has denotation

([(07 q0)7 (17 q1)7 (17 ql)]7 [(17 ql)]7 ql)
(corresponding to the type Lo go A L1 g1 — Ui g1 — q1)
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An inductive-coinductive fixpoint operator

Y transports

fi 41X ®4A — A
into
YX’A(f) . éX — A.
via
Yxa(f) = {(w,a)|3witness € run-tree(f, a) with w = leaves(witness)

and witness is accepting }
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An inductive-coinductive fixpoint operator

Yxa(f) = {(w,a)|3witness € run-tree(f, a) with w = leaves(witness)
and witness is accepting }

witness is built from finite pieces

(c,a’)
W
(c1,x1) (ch, %) (c1,a1) (c2, a0)

where

(([(C{,Xl), (Cé,Xg), .. .], [(Cl7 al), (C2, 32), .. ]) ,a’) ef

leaves(witness) is the colored multiset of the parameter leaves of witness.

Y is a Conway operator, and Rel; is a model of the A\Y-calculus.
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Model-checking and infinitary semantics

Conjecture

An APT A has a winning run from qo over (G) if and only if

q0 € [M9)]

where A\(G) is a AY-term corresponding to G.

Using Church encoding, we can also design an interpretation independent
of the automaton of interest.
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Finitary semantics

In Scottl, we define [J, A and Y similarly (using downward-closures).

Scottl, is a model of the AY-calculus.

Theorem

An APT A has a winning run from qo over (G) if and only if

q0 € [M9)]

Corollary

The higher-order model-checking problem is decidable.
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Elements of proof

The proof proceeds by relating
@ Scottl, to an intersection type system Sy (A) extending Terui's with
recursion and parity conditions,
@ Sfix(A) and the colored intersection type system presented earlier, on
n-long B-normal forms
@ and by using our modified version of the soundness-and-completeness
theorem of Kobayashi and Ong.
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Decidability

Checking whether qo € [G] <= solving a parity game on a finite
fragment of Scottl,, which is decidable.

We also obtain memoryless strategies which correspond to regular typings

in Six(A):

m
0+ uFr B,
Sy
Fi:{(cy.By) | i€h},. b R(Fi):a 0 uFi: B, 0+ uFy :,6’1{,,
k

0+ pFi:q
A key to the selection property.
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Conclusion

@ Connections between intersection types and linear logic
@ Refinement of the Kobayashi-Ong type system: coloring is a modality
@ Colored models of the AY-calculus coming from linear logic
@ Decidability using the finitary Scott semantics
@ Raises interesting questions in semantics: infinitary models,
coeffects. ..
@ Towards the model-checking of other classes of properties?
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Conclusion

@ Connections between intersection types and linear logic
@ Refinement of the Kobayashi-Ong type system: coloring is a modality
@ Colored models of the AY-calculus coming from linear logic
@ Decidability using the finitary Scott semantics
@ Raises interesting questions in semantics: infinitary models,
coeffects. ..
@ Towards the model-checking of other classes of properties?

Thank you for your attention!
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