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Model-checking higher-order programs

For higher-order programs with recursion, the model M of interest is a
higher-order regular tree.

Example:

Main = Listen Nil

Listen x = if end then x else Listen (data x)

modelled as

if

if

if

...data

data

Nil

data

Nil

Nil
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Model-checking higher-order programs

For higher-order programs with recursion, the model M of interest is a
higher-order regular tree.

Example:

Main = Listen Nil

Listen x = if end then x else Listen (data x)

modelled as

if

if

if

...data

data

Nil

data

Nil

Nil

How to represent this tree finitely?
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Model-checking higher-order programs

For higher-order programs with recursion, the model M of interest is a
higher-order regular tree

over which we run

an alternating parity tree automaton (APT) Aϕ

corresponding to a

monadic second-order logic (MSO) formula ϕ.

(safety, liveness properties, etc)

Can we decide whether a higher-order regular tree satisfies a MSO
formula?
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Higher-order recursion schemes

Some regularity for infinite trees
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Higher-order recursion schemes

Main = Listen Nil

Listen x = if end then x else Listen (data x)

is abstracted as

G =

{
S = L Nil

L x = if x (L (data x ) )

which produces (how ?) the higher-order tree of actions

if

if
...data

Nil

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

Rewriting starts from the start symbol S:

S →G
L

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

L

Nil

→G

if

L

data

Nil

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

if

L

data

Nil

Nil

→G

if

if

L

data

data

Nil

data

Nil

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

〈G〉 =

if

if

if

...data

data

Nil

data

Nil

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

“Everything” is simply-typed, and

well-typed programs can’t go too wrong:

we can detect productivity, and enforce it (replace divergence by outputing
a distinguished symbol Ω in one step).
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

“Everything” is simply-typed, and

well-typed programs can’t go too wrong:

we can detect productivity, and enforce it (replace divergence by outputing
a distinguished symbol Ω in one step).

HORS can alternatively be seen as simply-typed λ-terms with

simply-typed recursion operators Yσ : (σ → σ)→ σ.
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Alternating parity tree automata
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Alternating parity tree automata

For a MSO formula ϕ,

〈G〉 � ϕ

iff an equivalent APT Aϕ has a run over 〈G〉.

APT = alternating tree automata (ATA) + parity condition.
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Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).
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Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if

if

...data

data

Nil

data

Nil

Nil

−→Aϕ

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil
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Alternating parity tree automata

MSO discriminates inductive from coinductive behaviour.

This allows to express properties as

“a given operation is executed infinitely often in some execution”

or

“after a read operation, a write eventually occurs”.
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Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

c1

c2

c3

c4

c5
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Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ϕ:

Aϕ has a winning run-tree over 〈G〉 iff 〈G〉 � φ.
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Recognition by homomorphism
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Automata and recognition

For the usual finite automata on words: given a regular language L ⊆ A∗,

there exists a finite automaton A recognizing L

if and only if

there exists a finite monoid M, a subset K ⊆ M
and a homomorphism φ : A∗ → M such that L = φ−1(K ).

Roughly speaking: there exists a finite algebraic structure in which the
language is interpreted.

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking March 14, 2016 12 / 40



Automata and recognition

Let’s extend this to:

higher-order recursion schemes

alternating parity automata

using domains (Aehlig 2006, Salvati 2009).

How to model. . .

Alternation?

Recursion?

Parity condition?
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Intersection types and alternation
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Alternating tree automata and intersection types

A key remark (Kobayashi 2009):

δ(q0, if) = (2, q0) ∧ (2, q1)

can be seen as the intersection typing

if : ∅ → (q0 ∧ q1)→ q0

refining the simple typing

if : o → o → o

(this talk is NOT about filter models!)
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Alternating tree automata and intersection types

In a derivation typing if T1 T2 :

δ ∅ ` if : ∅ → (q0 ∧ q1)→ q0 ∅
App

∅ ` if T1 : (q0 ∧ q1)→ q0

...
Γ21 ` T2 : q0

...
Γ22 ` T2 : q1

App
Γ21, Γ22 ` if T1 T2 : q0

Intersection types naturally lift to higher-order – and thus to G, which
finitely represents 〈G〉.

Theorem (Kobayashi)

S : q0 ` S : q0 iff the ATA Aϕ has a run-tree over 〈G〉.
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A type-system for verification: without parity conditions

Axiom
x :

∧
{i} θi :: κ ` x : θi :: κ

{ (i , qij ) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ

∅ ` a :
∧k1

j=1 q1j → . . . →
∧kn

j=1 qnj → q :: o → · · · → o

∆ ` t : ( θ1 ∧ · · · ∧ θk )→ θ :: κ→ κ′ ∆i ` u : θi :: κ
App

∆ , ∆1 , . . . , ∆k ` t u : θ :: κ′

∆ , x :
∧

i∈I θi :: κ ` t : θ :: κ′

λ
∆ ` λ x . t :

(∧
i∈I θi

)
→ θ :: κ→ κ′

Γ ` R(F ) : θ :: κ
fix

F : θ :: κ ` F : θ :: κ
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A closer look at the Application rule

∆ ` t : ( θ1 ∧ · · · ∧ θk )→ θ :: κ→ κ′ ∆i ` u : θi :: κ
App

∆ , ∆1 , . . . , ∆k ` t u : θ :: κ′

Towards sequent calculus:

∆ ` t : (
∧n

i=1 θi )→ θ′
∆i ` u : θi ∀i ∈ {1, . . . n}

Right
∧

∆1, . . . , ∆n ` u :
∧n

i=1 θi

∆, ∆1, . . . , ∆n ` t u : θ′
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A closer look at the Application rule

∆ ` t : (
∧n

i=1 θi )→ θ′
∆i ` u : θi ∀i ∈ {1, . . . n}

Right
∧

∆1, . . . , ∆n ` u :
∧n

i=1 θi

∆, ∆1, . . . , ∆n ` t u : θ′

Linear decomposition of the intuitionnistic arrow:

A⇒ B = ! A( B

Two steps: duplication / erasure, then linear use.

Right
∧

corresponds to the Promotion rule of indexed linear logic.
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Intersection types and semantics of linear logic

A⇒ B = ! A( B

Two interpretations of the exponential modality:

Qualitative models
(Scott semantics)

! A = Pfin(A)

[[o ⇒ o]] = Pfin(Q)× Q

{q0, q0, q1} = {q0, q1}

Order closure

Quantitative models
(Relational semantics)

! A = Mfin(A)

[[o ⇒ o]] = Mfin(Q)× Q

[q0, q0, q1] 6= [q0, q1]

Unbounded multiplicities
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An example of interpretation

λx

λy

a q0

a q1

x q1x q1

a q0

y q1x q0

In Rel , one denotation:

([q0, q1, q1], [q1], q0)

In ScottL, a set
containing the principal
type

({q0, q1}, {q1}, q0)

but also

({q0, q1, q2}, {q1}, q0)

and

({q0, q1}, {q0, q1}, q0)

and . . .
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Intersection types and semantics of linear logic

Rel!

Ehrhard

��

Bucciareli−Ehrhard

de Carvalho
// Non-idempotent types

Ehrhard

��

oo

ScottL!
Ehrhard

Terui
// Idempotent typesoo

Fundamental idea:

[[t]] ∼= { θ | ∅ ` t : θ }

for a closed term.
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Intersection types and semantics of linear logic

Rel!

Ehrhard

��

Bucciareli−Ehrhard

de Carvalho
// Non-idempotent types

Ehrhard

��

oo

ScottL!
Ehrhard

Terui
// Idempotent typesoo

Let t be a term normalizing to a tree 〈t〉 and A be an alternating
automaton.

A accepts 〈t〉 from q ⇔ q ∈ [[t]] ⇔ ∅ ` t : q :: o

Extension with recursion and parity condition?
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Adding parity conditions
to the type system
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Alternating parity tree automata

We add coloring annotations to intersection types:

δ(q0, if) = (2, q0) ∧ (2, q1)

now corresponds to

if : ∅ →
(
�Ω(q0) q0 ∧�Ω(q1) q1

)
→ q0

Idea: if is a run-tree with two holes:

if

[ ]q1[ ]q0

A new neutral color: ε for an empty run-tree context [ ]q.
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An example of colored intersection type

Set Ω(qi ) = i .

λx

λy

a q1

a q1

x q1x q1

a q0

y q1x q0

has type
�0 q0 ∧�1 q1 → �1 q1 → q1

Note the color 0 on q0. . .
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A type-system for verification (Grellois-Melliès 2014)

Axiom
x :

∧
{i} �ε θi :: κ ` x : θi :: κ

{ (i , qij ) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ

∅ ` a :
∧k1

j=1�Ω(q1j ) q1j → . . . →
∧kn

j=1�Ω(qnj ) qnj → q :: o → · · · → o → o

∆ ` t : (�m1 θ1 ∧ · · · ∧�mk
θk )→ θ :: κ→ κ′ ∆i ` u : θi :: κ

App
∆ + �m1 ∆1 + . . . + �mk

∆k ` t u : θ :: κ′

Γ ` R(F ) : θ :: κ
fix

F : �ε θ :: κ ` F : θ :: κ

∆ , x :
∧

i∈I �mi θi :: κ ` t : θ :: κ′

λ
∆ ` λ x . t :

(∧
i∈I �mi θi

)
→ θ :: κ→ κ′
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A type-system for verification

A colored Application rule:

∆ ` t : (�c1 θ1 ∧ · · · ∧�ck
θk )→ θ :: κ→ κ′ ∆i ` u : θi :: κ

App
∆ + �c1 ∆1 + . . . + �ck

∆k ` t u : θ :: κ′

inducing a winning condition on infinite proofs: the node

∆i ` u : θi :: κ

has color ci , others have color ε, and we use the parity condition.
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A type-system for verification

We now capture all MSO:

Theorem (G.-Melliès 2014, from Kobayashi-Ong 2009)

S : q0 ` S : q0 admits a winning typing derivation iff the alternating
parity automaton A has a winning run-tree over 〈G〉.

We obtain decidability by considering idempotent types.

Non-idempotency is very helpful for proofs, but leads to infinitary
constructions.
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Colored models of linear logic
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A closer look at the Application rule

∆ ` t : (�m1 θ1 ∧ · · · ∧�mk
θk )→ θ :: κ→ κ′ ∆i ` u : θi :: κ

∆ + �m1 ∆1 + . . . + �mk
∆k ` t u : θ :: κ′

Towards sequent calculus:

∆ ` t : (
∧n

i=1 �mi θi )→ θ

∆1 ` u : θ1

�m1 ∆1 ` u : �m1 θ1 . . .
∆n ` u : θn Right �

�mn ∆n ` u : �mn θ1
Right

∧
�m1∆1, . . . , �mn ∆n ` u :

∧n
i=1 �mi θi

∆, �m1∆1, . . . , �mn ∆n ` t u : θ

Right � looks like a promotion. In linear logic:

A⇒ B = !�A( B

Our reformulation of the Kobayashi-Ong type system shows that � is a
modality (in the sense of S4) which distributes with the exponential in the
semantics.
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Colored semantics

We extend:

Rel with countable multiplicites, coloring and an
inductive-coinductive fixpoint

ScottL with coloring and an inductive-coinductive fixpoint.

Methodology: think in the relational semantics, and adapt to the Scott
semantics using Ehrhard’s 2012 result:

the finitary model ScottL is the extensional collapse of Rel .
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Infinitary relational semantics

Extension of Rel with infinite multiplicities:

 A = Mcount(A)

and coloring modality

� A = Col × A

Distributive law:

λA = :  �A→ � A
{([(c , a1), (c , a2), . . .], (c, [a1, a2, . . .])) | ai ∈ A, c ∈ Col}

Allows to compose comonads:    =  � is an exponential in the infinitary
relational semantics.
This induces a colored CCC Rel   (→ model of the λ-calculus).
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An example of interpretation
Set Ω(qi ) = i .

λx

λy

a q1

a q1

x q1x q1

a q0

y q1x q0

has denotation

([(0, q0), (1, q1), (1, q1)], [(1, q1)], q1)

(corresponding to the type �0 q0 ∧�1 q1 → �1 q1 → q1)
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An inductive-coinductive fixpoint operator

Y transports

f :    X ⊗    A ( A

into
YX ,A (f ) :    X ( A.

via

YX ,A (f ) = { (w , a) | ∃witness ∈ run-tree(f , a) with w = leaves(witness)
and witness is accepting }
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An inductive-coinductive fixpoint operator

YX ,A (f ) = { (w , a) | ∃witness ∈ run-tree(f , a) with w = leaves(witness)
and witness is accepting }

witness is built from finite pieces

(c , a′)

· · ·(c2, a2)(c1, a1)· · ·(c ′2, x2)(c ′1, x1)

where ((
[(c ′1, x1), (c ′2, x2), . . .], [(c1, a1), (c2, a2), . . .]

)
, a′
)
∈ f

leaves(witness) is the colored multiset of the parameter leaves of witness.

Y is a Conway operator, and Rel   is a model of the λY -calculus.
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Model-checking and infinitary semantics

Conjecture

An APT A has a winning run from q0 over 〈G〉 if and only if

q0 ∈ [[λ(G)]]

where λ(G) is a λY -term corresponding to G.

Using Church encoding, we can also design an interpretation independent
of the automaton of interest.
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Finitary semantics

In ScottL, we define �, λ and Y similarly (using downward-closures).

ScottL   is a model of the λY -calculus.

Theorem

An APT A has a winning run from q0 over 〈G〉 if and only if

q0 ∈ [[λ(G)]]

Corollary

The higher-order model-checking problem is decidable.
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Elements of proof

The proof proceeds by relating

ScottL   to an intersection type system Sfix (A) extending Terui’s with
recursion and parity conditions,

Sfix (A) and the colored intersection type system presented earlier, on
η-long β-normal forms

and by using our modified version of the soundness-and-completeness
theorem of Kobayashi and Ong.
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Decidability

Checking whether q0 ∈ [[G]] ⇐⇒ solving a parity game on a finite
fragment of ScottL   , which is decidable.

We also obtain memoryless strategies which correspond to regular typings
in Sfix (A):

π1

F1 :{(cj1
,βj1

) | j1∈J1},... ` R(Fi ) :α

∅ ` µFk′′ :β′′
j′′
k′′

...
∅ ` µFk :βjk

...
∅ ` µFk′ :β′

j′
k′

∅ ` µF1 : q

A key to the selection property.
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Conclusion

Connections between intersection types and linear logic

Refinement of the Kobayashi-Ong type system: coloring is a modality

Colored models of the λY -calculus coming from linear logic

Decidability using the finitary Scott semantics

Raises interesting questions in semantics: infinitary models,
coeffects. . .

Towards the model-checking of other classes of properties?

Thank you for your attention!
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