Semantics of linear logic and higher-order model-checking

Charles Grellois

Thèse dirigée par Paul-André Melliès et Olivier Serre

IRIF — Université Paris Diderot - Paris 7

8 avril 2016
Linear logic: a logical system with an emphasis on the notion of resource.

Model-checking: a key technique in verification — where we want to determine automatically whether a program satisfies a specification.

My thesis: linear logic and its semantics can be enriched to obtain new and cleaner proofs of decidability in higher-order model-checking.
What is model-checking?
The halting problem

A natural question: does a program always terminate?

Undecidable problem (Turing 1936): a machine can not always determine the answer.

What if we use approximations?
Model-checking

Approximate the program \rightarrow build a model \mathcal{M}.

Then, formulate a logical specification φ over the model.

Aim: design a program which checks whether

$$\mathcal{M} \vDash \varphi.$$

That is, whether the model \mathcal{M} meets the specification φ.
An example

\[
\begin{align*}
\text{Main} &= \text{Listen Nil} \\
\text{Listen } x &= \text{if end_signal() then } x \\
&\quad \text{else Listen received_data()}::x
\end{align*}
\]
An example

\[
\text{Main} \quad = \quad \text{Listen Nil} \\
\text{Listen } x \quad = \quad \text{if end_signal() then } x \\
\text{else Listen received_data():} x
\]

A tree model:

We abstracted **conditionals and datatypes**.
The approximation contains a non-terminating branch.
Finite representations of infinite trees

\[
\begin{aligned}
\text{if} &
\quad \text{if} \\
\text{Nil} &
\quad \text{if} \\
\text{data} &
\quad \text{if} \\
\quad \text{Nil} &
\quad \text{data} : \\
\quad \text{Nil} &
\quad \text{data} \\
\quad \text{Nil} &
\end{aligned}
\]

is not regular: it is not the unfolding of a finite graph as

\[
\begin{aligned}
\text{if} &
\quad \text{if} \\
\text{Nil} &
\quad \text{if} \\
\text{data} &
\quad \text{if} \\
\quad \text{data} \\
\quad \text{Nil} &
\end{aligned}
\]
Finite representations of infinite trees

but it is represented by a higher-order recursion scheme (HORS).
Higher-order recursion schemes

Some regularity for infinite trees

(see Chapter 3)
Higher-order recursion schemes

Main = Listen Nil
Listen \ x = if end_signal() then \ x
else Listen received_data() \ x

is abstracted as

\[G = \begin{cases}
S &= L \ Nil \\
L \ x &= \text{if } x (L \ (\text{data } x))
\end{cases} \]

which represents the higher-order tree of actions
Higher-order recursion schemes

\[G = \begin{cases}
S &= L \text{ Nil} \\
L \times &= \text{if } x(L(\text{data } x))
\end{cases} \]

Rewriting starts from the start symbol \(S \):

\[
\begin{array}{c}
S \rightarrow^G L \\
\text{Nil}
\end{array}
\]
Higher-order recursion schemes

\[G = \begin{cases}
 S = L \text{ Nil} \\
 L \ x = \text{if } x (L (\text{data } x))
\end{cases} \]
Higher-order recursion schemes

\[G = \begin{cases}
S &= L \text{ Nil} \\
L \ x &= \text{if } x \ (L \ (\text{data } x))
\end{cases} \]
Higher-order recursion schemes

\[
\mathcal{G} = \left\{ \begin{array}{ll}
S & = \text{L Nil} \\
L \ x & = \text{if } x (\text{L (data } x))
\end{array} \right.
\]

\[
\langle \mathcal{G} \rangle = \text{if}
\]

\[
\text{Nil} \quad \text{if}
\]

\[
\text{data} \quad \text{if}
\]

\[
\text{Nil} \quad \text{data}
\]

\[
\text{Nil}
\]
Higher-order recursion schemes

\[G = \begin{cases}
S &= L \text{ Nil} \\
L \, x &= \text{if } x (L (\text{data } x))
\end{cases} \]

HORS can alternatively be seen as simply-typed \(\lambda \)-terms with simply-typed recursion operators \(Y_\sigma : (\sigma \rightarrow \sigma) \rightarrow \sigma \).
Higher-order recursion schemes

\[G = \begin{cases}
S &= L \text{ Nil} \\
L \; x &= \text{if } x (L \; (\text{data } x))
\end{cases} \]

HORS can alternatively be seen as simply-typed \(\lambda \)-terms with simply-typed recursion operators \(Y_\sigma : (\sigma \rightarrow \sigma) \rightarrow \sigma \).

The rewriting may be presented coinductively (see Chapter 4).
Alternating parity tree automata

Checking specifications over trees

(see Chapter 2)
Monadic second order logic

MSO is a common logic in verification, allowing to express properties as:

« all executions halt »

« a given operation is executed infinitely often in some execution »

« every time data is added to a buffer, it is eventually processed »
Alternating parity tree automata

Checking whether a formula holds can be performed using an automaton.

For an MSO formula φ, there exists an equivalent APT A_φ s.t.

$$\langle G \rangle \models \varphi \iff A_\varphi \text{ has a run over } \langle G \rangle.$$

APT = alternating tree automata (ATA) + parity condition.
Alternating tree automata

ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically: $\delta(q_0, \text{if}) = (2, q_0) \land (2, q_1)$.
Alternating tree automata

ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically: $\delta(q_0, \text{if}) = (2, q_0) \land (2, q_1)$.

![Diagram of Alternating Tree Automata]

Charles Grellois (IRIF)
Semantics of linear logic and HOMC
April 8, 2016 14 / 46
Alternating parity tree automata

Each state of an APT is attributed a color

\[\Omega(q) \in Col \subseteq \mathbb{N} \]

An infinite branch of a run-tree is winning iff the maximal color among the ones occurring infinitely often along it is even.
Alternating parity tree automata

Each state of an APT is attributed a color

\[\Omega(q) \in \text{Col} \subseteq \mathbb{N} \]

An infinite branch of a run-tree is winning iff the maximal color among the ones occurring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula \(\varphi \):

\[A_\varphi \text{ has a winning run-tree over } \langle G \rangle \iff \langle G \rangle \models \varphi. \]
The higher-order model-checking problems
The (local) HOMC problem

Input: HORS \mathcal{G}, formula φ.

Output: true if and only if $\langle \mathcal{G} \rangle \models \varphi$.

Example: $\varphi = \langle$ there is an infinite execution \rangle
The (local) HOMC problem

Input: HORS G, formula φ.

Output: true if and only if $\langle G \rangle \models \varphi$.

Example: $\varphi = «$ there is an infinite execution $»$

Output: true.

\[
\begin{array}{c}
\text{if} \\
\text{Nil} \\
\text{if} \\
\text{data} \\
\text{if} \\
\text{Nil} \\
\text{if} \\
\text{Nil} \\
\text{if} \\
\text{Nil}
\end{array}
\]

Output: true.
The global HOMC problem

Input: HORS \mathcal{G}, formula φ.

Output: a HORS \mathcal{G}^\bullet producing a marking of $\langle \mathcal{G} \rangle$.

Example: $\varphi = \text{« there is an infinite execution »}$

Output: \mathcal{G}^\bullet of value tree:

```
  if\^{	ext{•}}
  \quad \text{Nil}
  \quad \text{if\^{	ext{•}}}
  \quad \text{data}
  \quad \quad \text{if\^{	ext{•}}}
  \quad \quad \text{data}
  \quad \quad \quad \text{Nil}
  \quad \quad \quad \text{data}
  \quad \quad \quad \quad \text{Nil}
```
The selection problem

Input: HORS \mathcal{G}, APT \mathcal{A}, state $q \in Q$.

Output: false if there is no winning run of \mathcal{A} over $\langle \mathcal{G} \rangle$.
Else, a HORS \mathcal{G}^q producing a such a winning run.

Example: $\varphi = \langle$ there is an infinite execution \rangle, q_0 corresponding to φ

Output: \mathcal{G}^{q_0} producing

\[
\begin{array}{c}
\text{if}^{q_0} \\
\text{if}^{q_0} \\
\text{if}^{q_0} \\
\vdots \\
\end{array}
\]
Purpose of this thesis

These three problems are **decidable**, with elaborate proofs (often) relying on **semantics**.

Our contribution: an excavation of the semantic roots of HOMC, at the light of **linear logic**, leading to refined and clarified proofs.
Recognition by homomorphism

Where semantics comes into play
Automata and recognition
For the usual finite automata on words: given a regular language \(L \subseteq A^* \),

there exists a finite automaton \(A \) recognizing \(L \)

if and only if...

there exists a finite monoid \(M \), a subset \(K \subseteq M \)
and a homomorphism \(\varphi : A^* \rightarrow M \) such that \(L = \varphi^{-1}(K) \).
Automata and recognition

The picture we want:

(after Aehlig 2006, Salvati 2009)

but with recursion and w.r.t. an APT.
Intersection types and alternation

A first connection with linear logic
A key remark (Kobayashi 2009):

\[\delta(q_0, \text{if}) = (2, q_0) \land (2, q_1) \]

can be seen as the intersection typing

\[\text{if} : \emptyset \to (q_0 \land q_1) \to q_0 \]

refining the simple typing

\[\text{if} : o \to o \to o \]
Alternating tree automata and intersection types

In a derivation typing the tree \(\text{if } T_1 \ T_2 : \)

\[
\begin{align*}
\delta & \quad \emptyset \vdash \text{if} : \emptyset \rightarrow (q_0 \land q_1) \rightarrow q_0 \\
\text{App} & \quad \emptyset \vdash \text{if} \ T_1 : (q_0 \land q_1) \rightarrow q_0 \\
\text{App} & \quad \emptyset \vdash \text{if} \ T_1 \ T_2 : q_0
\end{align*}
\]

Intersection types naturally lift to higher-order – and thus to \(\mathcal{G} \), which finitely represents \(\langle \mathcal{G} \rangle \).

Theorem (Kobayashi 2009)

\[\vdash \mathcal{G} : q_0 \iff \text{the ATA } \mathcal{A}_\varphi \text{ has a run-tree over } \langle \mathcal{G} \rangle. \]
A closer look at the Application rule

In the intersection type system:

\[
\Delta \vdash t : (\theta_1 \land \cdots \land \theta_n) \rightarrow \theta \\
\Delta_i \vdash u : \theta_i \\
\Delta, \Delta_1, \ldots, \Delta_n \vdash t u : \theta
\]

This rule could be decomposed as:

\[
\Delta \vdash t : (\bigland_{i=1}^n \theta_i) \rightarrow \theta' \\
\Delta_i \vdash u : \theta_i \\
\forall i \in \{1, \ldots, n\} \\
\Delta_1, \ldots, \Delta_n \vdash u : \bigland_{i=1}^n \theta_i \\
\Delta, \Delta_1, \ldots, \Delta_n \vdash t u : \theta'
\]

\[
\text{Right } \land
\]
A closer look at the Application rule

In the intersection type system:

\[
\frac{\Delta \vdash t : (\theta_1 \land \cdots \land \theta_n) \rightarrow \theta}{\Delta, \Delta_1, \ldots, \Delta_n \vdash t \ u : \theta}
\]

This rule could be decomposed as:

\[
\frac{\Delta \vdash t : (\bigwedge_{i=1}^n \theta_i) \rightarrow \theta'}{\Delta, \Delta_1, \ldots, \Delta_n \vdash t \ u : \theta'}
\]

\[
\frac{\Delta_i \vdash u : \theta_i}{\Delta_1, \ldots, \Delta_n \vdash u : \bigwedge_{i=1}^n \theta_i}
\]

\[
\frac{\forall i \in \{1, \ldots, n\}}{\Delta, \Delta_1, \ldots, \Delta_n \vdash t \ u : \theta'}
\]
A closer look at the Application rule

\[
\Delta \vdash t : \left(\bigwedge_{i=1}^n \theta_i \right) \rightarrow \theta' \\
\begin{array}{c}
\Delta_i \vdash u : \theta_i \\
\forall i \in \{1, \ldots, n\}
\end{array}
\begin{array}{c}
\Delta_1, \ldots, \Delta_n \vdash u : \bigwedge_{i=1}^n \theta_i
\end{array}
\]

Right \bigwedge

\Delta, \Delta_1, \ldots, \Delta_n \vdash tu : \theta'

Linear decomposition of the intuitionistic arrow:

\[A \Rightarrow B = ! A \multimap B\]

Two steps: duplication / erasure, then linear use.

Right \bigwedge corresponds to the Promotion rule of indexed linear logic.
(see G.-Melliès, ITRS 2014)
Intersection types and semantics of linear logic

\[A \Rightarrow B = !A \multimap B \]

Two interpretations of the exponential modality:

Qualitative models (Scott semantics)

\[!A = \mathcal{P}_{\text{fin}}(A) \]

\[\llbracket o \Rightarrow o \rrbracket = \mathcal{P}_{\text{fin}}(Q) \times Q \]

\[\{q_0, q_0, q_1\} = \{q_0, q_1\} \]

Order closure

Quantitative models (Relational semantics)

\[!A = \mathcal{M}_{\text{fin}}(A) \]

\[\llbracket o \Rightarrow o \rrbracket = \mathcal{M}_{\text{fin}}(Q) \times Q \]

\[\{q_0, q_0, q_1\} \neq \{q_0, q_1\} \]

Unbounded multiplicities
An example of interpretation

In \textit{Rel}, one denotation:

\[(q_0, q_1, q_1), (q_1), q_0)\]

In \textit{ScottL}, a set containing the principal type

\[\{q_0, q_1\}, \{q_1\}, q_0\]

but also

\[\{q_0, q_1, q_2\}, \{q_1\}, q_0\]

and

\[\{q_0, q_1\}, \{q_0, q_1\}, q_0\]

and \ldots
Intersection types and semantics of linear logic

Fundamental idea:

\[\llbracket t \rrbracket \cong \{ \theta \mid \emptyset \vdash t : \theta \} \]

for a closed term.
Let t be a term normalizing to a tree $\langle t \rangle$ and \mathcal{A} be an alternating automaton.

\[
\mathcal{A} \text{ accepts } \langle t \rangle \text{ from } q \iff q \in \llbracket t \rrbracket \iff \emptyset \vdash t : q :: o
\]

(see Chapter 5)

Extension with recursion and parity condition?
Adding parity conditions to the type system
Alternating parity tree automata

We add coloring annotations to intersection types:

\[\delta(q_0, \text{if}) = (2, q_0) \land (2, q_1) \]

now corresponds to

\[\text{if} : \emptyset \rightarrow (\square_\Omega(q_0) q_0 \land \square_\Omega(q_1) q_1) \rightarrow q_0 \]

Idea: if is a run-tree with two holes:

\[\text{if} \]
\[\boxed{} q_0 \quad \boxed{} q_1 \]

A new neutral (least) color: \(\epsilon \).

We refine the approach of Kobayashi and Ong in a modal way (see Chapter 6).
An example of colored intersection type

Set $\Omega(q_0) = 0$ and $\Omega(q_1) = 1$.

has now type

$$\square_0 q_0 \land \square_1 q_1 \rightarrow \square_1 q_1 \rightarrow q_1$$

Note the color 0 on q_0...
A type-system for verification (Grellois-Melliès 2014)

\[
\begin{align*}
\text{Axiom} & \\
x & : \Box_\epsilon \theta_i \vdash x : \theta_i
\end{align*}
\]

\[
\delta
\begin{align*}
\{ (i, q_{ij}) \mid 1 \leq i \leq n, 1 \leq j \leq k_i \} & \text{ satisfies } \delta_A(q, a) \\
\emptyset & \vdash a : \bigwedge_{j=1}^{k_1} \Box \Omega(q_{1j}) q_{1j} \to \cdots \to \bigwedge_{j=1}^{k_n} \Box \Omega(q_{nj}) q_{nj} \to q
\end{align*}
\]

\[
\text{App}
\begin{align*}
\Delta & \vdash t : (\bigwedge_{i=1}^{m_1} \theta_1 \land \cdots \land \bigwedge_{i=1}^{m_k} \theta_k) \to \theta \\
\Delta & + \bigwedge_{i=1}^{m_1} \Delta_1 + \cdots + \bigwedge_{i=1}^{m_k} \Delta_k \vdash t \ u : \theta
\end{align*}
\]

\[
\lambda
\begin{align*}
\Delta, x : \bigwedge_{i \in I} \Box_{m_i} \theta_i & \vdash t : \theta \\
\Delta & \vdash \lambda x \cdot t : (\bigwedge_{i \in I} \Box_{m_i} \theta_i) \to \theta
\end{align*}
\]

\[
\text{fix}
\begin{align*}
\Gamma & \vdash R(F) : \theta \\
F & : \Box_\epsilon \theta \vdash F : \theta
\end{align*}
\]
A type-system for verification

A colored Application rule:

\[
\Delta \vdash t : (\Box_{m_1} \theta_1 \land \cdots \land \Box_{m_k} \theta_k) \rightarrow \theta \quad \Delta_i \vdash u : \theta_i \\
\Delta + \Box_{m_1} \Delta_1 + \cdots + \Box_{m_k} \Delta_k \vdash t \ u : \theta
\]
A type-system for verification

A colored Application rule:

\[
\frac{△ ⊢ t : (□_{m_1} \theta_1 \land \cdots \land □_{m_k} \theta_k) \rightarrow \theta}{△ + □_{m_1} Δ_1 + \ldots + □_{m_k} Δ_k ⊢ t \ u : \ θ}
\]

inducing a winning condition on infinite proofs: the node

\[\Delta_i ⊢ u : \theta_i\]

has color \(m_i\), others have color \(ɛ\), and we use the parity condition.
A type-system for verification

We now capture all MSO (see Chapter 6-8):

Theorem (G.-Melliès 2014, from Kobayashi-Ong 2009)

\[
S : q_0 \vdash S : q_0 \text{ admits a winning typing derivation iff the alternating parity automaton } A \text{ has a winning run-tree over } \langle G \rangle.
\]

We obtain decidability by considering idempotent types.

Our reformulation

- shows the modal nature of \(\Box \) (in the sense of S4),
- internalizes the parity condition,
- paves the way for semantic constructions.
Colored models of linear logic
A closer look at the Application rule

\[\Delta \vdash t : (\Box m_1 \theta_1 \land \cdots \land \Box m_k \theta_k) \rightarrow \theta \quad \Delta_i \vdash u : \theta_i \]

\[\Delta + \Box m_1 \Delta_1 + \cdots + \Box m_k \Delta_k \vdash t u : \theta \]

could be decomposed as:

\[\Delta \vdash t : \left(\bigwedge_{i=1}^k \Box m_i \theta_i \right) \rightarrow \theta \quad \Box m_1 \Delta_1 \vdash u : \Box m_1 \theta_1 \quad \cdots \quad \Box m_k \Delta_k \vdash u : \Box m_k \theta_k \]

\[\Delta, \Box m_1 \Delta_1, \ldots, \Box m_k \Delta_k \vdash t u : \theta \]

Right \(\Box \) looks like a promotion. In linear logic:

\[A \Rightarrow B \quad = \quad ! \Box A \multimap B \]

We show that the modality \(\Box \) distributes over the exponential in the semantics.
Colored semantics

We extend:

- Rel with countable multiplicities, coloring and an inductive-coinductive fixpoint (Chapter 9)
- $ScottL$ with coloring and an inductive-coinductive fixpoint (Chapter 10).

Methodology: think in the relational semantics, and adapt to the Scott semantics using Ehrhard’s 2012 result:

the finitary model $ScottL$ is the extensional collapse of Rel.
Infinitary relational semantics

Extension of Rel with infinite multiplicities:

$$\downarrow A = \mathcal{M}_{\text{count}}(A)$$

and coloring modality (parametric comonad)

$$\Box A = Col \times A$$

Composite comonad: $\Downarrow = \downarrow \Box$ is an exponential.

Induces a colored CCC Rel_\Downarrow (\rightarrow model of the λ-calculus).
An example of interpretation
Set $\Omega(q_i) = i$.

\[
\lambda x \\
\lambda y \\
a \quad q_1 \\
a \quad q_0 \\
x \quad q_0 \\
y \quad q_1 \\
x \quad q_0 \\
y \quad q_1 \\
q_1 \\
q_1 \\
q_1
\]

has denotation

\[([(0, q_0), (1, q_1), (1, q_1)], [(1, q_1)], q_1)\]

(corresponding to the type $\Box_0 q_0 \land \Box_1 q_1 \to \Box_1 q_1 \to q_1$)
Model-checking and infinitary semantics (Chapter 9)

Inductive-coinductive fixpoint operator: composes denotations w.r.t. the parity condition.

Theorem

An APT A has a winning run from q_0 over $\langle G \rangle$ if and only if

$$q_0 \in [\lambda(G)]_A$$

where $\lambda(G)$ is a λY-term corresponding to G.

Conjecture

An APT A has a winning run from q_0 over $\langle G \rangle$ if and only if

$$q_0 \in [\lambda(G)^\Sigma] \circ [\delta^\dagger]$$

where $\lambda(G)^\Sigma$ is a *Church encoding* of a λY-term corresponding to G.
Finitary semantics (Chapter 10)

In ScottL, we define □, λ and Y similarly (using downward-closures). ScottL↓ is a model of the λY-calculus.

Theorem

An APT A has a winning run from q₀ over ⟨G⟩ if and only if

q₀ ∈ [λ(G)].

Corollary

The local higher-order model-checking problem is decidable (and is n-EXPTIME complete).

Theorem

The selection problem is decidable.
Contributions (see Chapter 11)

- A coinductive presentation of the interaction of HORS rewriting and APT execution (Chapter 4)

- A modal and purely type-theoretic reformulation of the Kobayashi-Ong type system (Chapter 6), including a full proof of the soundness-and-completeness theorem (Chapters 7 and 8)

- An infinitary model of linear logic, with a non-continuous interpretation of λY-terms (Chapter 9)

- Colored tensorial logic (Chapter 9)

- A finitary model of linear logic leading to the decidability of the HOMC problems (Chapter 10)
Perspectives (see Chapter 11)

- A purely coinductive proof of the soundness-and-completeness theorem
- Accommodating the modal approach to other classes of automata
- Understanding the infinitary semantics
- Logical aspects: colored tensorial logic, fixpoints...
- Game semantics interpretations?
- Is the complexity related to light linear logics?
- Extensional collapse between the two colored models?