Higher-order model-checking, categorical semantics, and linear logic

Charles Grellois (joint work with Paul-André Melliès)

PPS & LIAFA — Université Paris 7

TACL conference — June 21, 2015
Construct a model \mathcal{M} of a program

Specify a property φ in an appropriate logic

Make them interact: the result is whether

$$\mathcal{M} \models \varphi$$

If \mathcal{M} is a word, a tree...of actions: translate φ to an equivalent automaton:

$$\varphi \mapsto A\varphi$$
Model-checking higher-order programs

For higher-order programs with recursion:

\[M \] is a higher-order tree:

a tree produced by a higher-order recursion schemes (HORS)

over which we run

an alternating parity tree automaton (APT) \(A_{\varphi} \)

corresponding to a

modal \(\mu \)-calculus formula \(\varphi \).

(NB: here modal \(\mu \)-calculus is equivalent to MSO)
Higher-order recursion schemes

\[\mathcal{G} = \begin{cases}
S & = & L \text{ Nil} \\
L \ x & = & \text{if } x \ (L \ (\text{data } x))
\end{cases} \]

A HORS is a kind of deterministic higher-order grammar.

Rewrite rules have (higher-order) parameters.

“Everything” is simply-typed.

Rewriting produces a tree \(\langle \mathcal{G} \rangle \).
Higher-order recursion schemes

\[G = \begin{cases}
 S & = & L \text{ Nil} \\
 L \ x & = & \text{if } x(L\ (\text{data } x))
\end{cases} \]

Rewriting starts from the start symbol S:

\[S \rightarrow_G L \text{ Nil} \]
Higher-order recursion schemes

\[G = \begin{cases}
 S & = & L \text{ Nil} \\
 L \ x & = & \text{if } x (L (\text{data } x))
\end{cases} \]
Higher-order recursion schemes

\[G = \begin{cases}
S & = L \text{ Nil} \\
L \times & = \text{if } x (L \text{ (data } x))
\end{cases} \]
Higher-order recursion schemes

\[
\mathcal{G} = \begin{cases}
S & = L \text{ Nil} \\
L \ x & = \text{if } x (L \ (\text{data } x))
\end{cases}
\]

\(\langle \mathcal{G} \rangle\) is an infinite non-regular tree.

It is our model \(\mathcal{M}\).

How to model-check a non-regular tree?
Higher-order recursion schemes

\[G = \begin{cases}
 S & = & L \text{Nil} \\
 L \ x & = & \text{if } x (L \ (\text{data } x))
\end{cases} \]

HORS can alternatively be seen as simply-typed \(\lambda \)-terms with

free variables of order at most 1 (= tree constructors)

and

simply-typed recursion operators \(Y_\sigma : (\sigma \Rightarrow \sigma) \Rightarrow \sigma \).

Here:

\[G \leftrightarrow (Y_\sigma \ (\lambda L. \lambda x. \text{if } x (L (\text{data } x)))) \ \text{Nil} \]

So, we can interpret HORS in models of the \(\lambda \text{Y} \)-calculus.
Alternating parity tree automata

For a modal μ-calculus formula φ,

$$\langle G \rangle \models \varphi$$

iff an equivalent APT A_φ has a run over $\langle G \rangle$.

$$\text{APT} = \text{alternating tree automata (ATA) + parity condition.}$$

Our goal: interpret HORS in a model reflecting the behavior of A_φ.
Alternating tree automata

ATA: **non-deterministic** tree automata whose transitions may duplicate or drop a subtree.

Typically: $\delta(q_0, \text{if}) = (2, q_0) \land (2, q_1)$.
Alternating tree automata

ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically: $\delta(q_0, \text{if}) = (2, q_0) \land (2, q_1)$.
Alternating tree automata

ATA: **non-deterministic** tree automata whose transitions may
duplicate or drop a subtree.

Typically: \(\delta(q_0, \text{if}) = (2, q_0) \land (2, q_1) \).

This infinite process produces a **run-tree** of \(A_\varphi \) over \(\langle G \rangle \).

It is an infinite, **unranked** tree.
A key remark (Kobayashi 2009):

\[\delta(q_0, \text{if}) = (2, q_0) \land (2, q_1) \]

can be seen as the intersection typing

\[\text{if} : \emptyset \Rightarrow (q_0 \land q_1) \Rightarrow q_0 \]

refining the simple typing

\[\text{if} : o \Rightarrow o \Rightarrow o \]
Alternating tree automata and intersection types

In a derivation typing if $T_1 \rightarrow T_2$:

\[
\begin{align*}
\delta & \quad \text{if} : \emptyset \Rightarrow (q_0 \land q_1) \Rightarrow q_0 \\
\text{App} & \quad \emptyset \vdash \text{if } T_1 : (q_0 \land q_1) \Rightarrow q_0 \\
\text{App} & \quad \emptyset \vdash \text{if } T_1 \rightarrow T_2 : q_0
\end{align*}
\]

Intersection types naturally lift to higher-order – and thus to G, which finitely represents $\langle G \rangle$.

Theorem (Kobayashi)

$\emptyset \vdash G : q_0$ iff the ATA \mathcal{A}_φ has a run-tree over $\langle G \rangle$.

A step towards decidability...
Intersection types and linear logic

\[A \Rightarrow B = ! A \multimap B \]

A program of type \(A \Rightarrow B \)

duplicates or drops elements of \(A \)

and then

uses linearly (= once) each copy

Just as intersection types and APT.
Intersection types and linear logic

\[A \Rightarrow B = ! A \to B \]

Two interpretations of the exponential modality:

Qualitative models (Scott semantics)

\[! A = \mathcal{P}_{\text{fin}}(A) \]

\[\llbracket o \Rightarrow o \rrbracket = \mathcal{P}_{\text{fin}}(Q) \times Q \]

\[\{q_0, q_0, q_1\} = \{q_0, q_1\} \]

Order closure

Quantitative models (Relational semantics)

\[! A = \mathcal{M}_{\text{fin}}(A) \]

\[\llbracket o \Rightarrow o \rrbracket = \mathcal{M}_{\text{fin}}(Q) \times Q \]

\[\{q_0, q_0, q_1\} \neq \{q_0, q_1\} \]

Unbounded multiplicities
Intersection types and linear logic

Models of linear logic and intersection types (refining simple types):

\[
\begin{array}{c}
\text{Rel} \leftarrow \text{Rel}_! \quad \text{Bucciareli–Ehrhard}\text{ de Carvalho} \\
\downarrow \quad \downarrow \\
\text{Ehrhard} & \quad & \text{Ehrhard, G–M} \\
\text{Scott} \leftarrow \text{Scott}_! \quad \text{Terui} \\
\downarrow \\
\text{Idempotent types} \\
\end{array}
\]

\[
\begin{array}{c}
[q_0, q_0, q_1] \rightarrow q_0 \rightarrow q_0 \land q_0 \land q_1 \rightarrow q_0 \\
\downarrow \\
\{q_0, q_1\} \rightarrow q_0 \rightarrow q_0 \land q_1 \rightarrow q_0 \\
\end{array}
\]
Intersection types and linear logic

Models of linear logic and intersection types (refining simple types):

\[
\begin{align*}
\text{Rel} & \leftrightarrow \text{Rel}_! \\
\downarrow & \quad \downarrow \\
\text{Ehrhard} & \leftrightarrow \text{Ehrhard} \\
\text{Bucciareli – Ehrhard} & \leftrightarrow \text{de Carvalho} \\
\text{Non-idempotent types} & \leftrightarrow \text{Idempotent types} \\
\downarrow & \\
\text{Ehrhard, G–M} & \leftrightarrow \text{Terui} \\
\text{Scott} & \leftrightarrow \text{Scott}_! \\
\end{align*}
\]

Fundamental idea: derivations of the intersection type systems compute denotations in the associated model.
Four theorems: inductive version

We obtain a theorem for every corner of our “equivalence square”:

Theorem

In the relational (resp. Scott) semantics,

\[q_0 \in \llbracket G \rrbracket \text{ iff } \text{the ATA } A_\phi \text{ has a finite run-tree over } \langle G \rangle. \]

Theorem

With non-idempotent (resp. idempotent with subtyping) intersection types,

\[\vdash G : q_0 \text{ iff } \text{the ATA } A_\phi \text{ has a finite run-tree over } \langle G \rangle. \]
Rel and non-idempotent types lack of a countable multiplicity ω. Recall that tree constructors are free variables...

In Rel, we introduce a new exponential $A \mapsto \mathpzc{\forall} A$ s.t.

$$[[\mathpzc{\forall} A]] = M_{\text{count}}([[A]])$$

(finite-or-countable multisets), so that

$$[[A \Rightarrow B]] = \mathpzc{\forall} [[A] \rightarrow [B]] = M_{\text{count}}([[A]]) \times [[B]]$$
An infinitary model of linear logic

This defines an infinitary model of linear logic, which corresponds to non-idempotent intersection types with countable multiplicities and derivations of countable depth.

It admits a coinductive fixpoint, which we use to interpret Y.

The four theorems generalize to all ATA (\rightarrow infinite runs).

And the parity condition?
Alternating parity tree automata

MSO allows to discriminate inductive from coinductive behaviour.

This allows to express properties as

“a given operation is executed infinitely often in some execution”

or

“after a read operation, a write eventually occurs”.
Alternating parity tree automata

Each state of an APT receives a color

$$\Omega(q) \in \text{Col} \subseteq \mathbb{N}$$

An infinite branch of a run-tree is winning iff the maximal color among the ones occurring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a modal μ-calculus formula φ:

$$\mathcal{A}_\varphi$$ has a winning run-tree over $\langle G \rangle$ iff $\langle G \rangle \models \varphi$$
Alternating parity tree automata

Kobayashi and Ong’s type system has a quite complex handling of colors.

We reformulate it in a very simple way:

\[\delta(q_0, \text{if}) = (2, q_0) \land (2, q_1) \]

now corresponds to

\[\text{if} : \emptyset \Rightarrow (\Box_{\Omega(q_0)} q_0 \land \Box_{\Omega(q_1)} q_1) \Rightarrow q_0 \]

Application computes the “local” maximum of colors, and the fixpoint deals with the acceptance condition.

In this reformulation, the colors behave as a family of modalities.
The coloring comonad

Since coloring is a modality, it defines a comonad in the semantics:

\[\Box A = Col \times A \]

which can be composed with \(\dashv \) thanks to a distributive law.

Now:

\[\begin{array}{rcl} [A \Rightarrow B] & = & \dashv \Box [A] \rightarrow [B] = M_{\text{count}}(Col \times [A]) \times [B] \end{array} \]

We obtain a model of the \(\lambda \)-calculus which reflects the coloring by \(A_\phi \).
We define a fixpoint operator:

- On typing derivations: rephrasal of the parity condition over derivations \(\rightarrow \) winning derivations.
- On denotations: it composes inductively or coinductively elements of the semantics, according to the current color.

The key here: parity conditions can be lifted to higher-order.

The fixpoint can also be defined using \(\mu \) and \(\nu \).
The final picture

\[Rel_\downarrow + \Box + Y \leftarrow \text{Non-idempotent types} + \Box + Y \rightarrow \]

\[Scott_\downarrow + \Box + Y \leftarrow \text{Idempotent types} + \Box + Y \rightarrow \]

Open question: are the dotted lines an extensional collapse again?
Four theorems: full version

We obtain a theorem for every corner of our “colored equivalence square”:

Theorem (G-Melliès 2015)

In the colored relational (resp. colored Scott) semantics,

$$q_0 \in \llbracket G \rrbracket \iff \text{the APT } A_\phi \text{ has a winning run-tree over } \langle G \rangle.$$

Theorem (G-Melliès 2015)

With colored non-idempotent (resp. colored idempotent with subtyping) intersection types, there is a winning derivation of

$$\vdash G : q_0 \iff \text{the APT } A_\phi \text{ has a winning run-tree over } \langle G \rangle.$$
The selection problem

In the Scott/idempotent case, finiteness \Rightarrow decidability of the higher-order model-checking problem.

Even better: the selection problem is decidable.
The selection problem

\[
\begin{align*}
S & = L \text{ Nil} \\
L & = \lambda x. \text{ if } x (L (\text{ data } x))
\end{align*}
\]

becomes e.g.

\[
\begin{align*}
S^{q_0} & = L^{\{q_0, q_1\} \to q_0} \text{ Nil } q_0 \text{ Nil } q_1 \\
& \text{ if } \emptyset \to^{\circ} \{q_0, q_1\} \to q_0 \\
& \text{ data }^{\{q_0\} \to q_1} \\
L^{\{q_0\} \to q_1} & = \lambda x^{\{q_0, q_1\}}. \\
L^{\{q_1\} \to q_0} & = \cdots \\
L^{\{q_0\} \to q_1} & = \cdots
\end{align*}
\]
Conclusion

- Higher-order model-checking \rightarrow verification of non-regular trees.
- Semantic methods allow to study the term generating them.
- Models of linear logic can be extended to capture parity conditions.
- The semantic of a term reflects whether it satisfies a given property.
- Decidability \rightarrow existence of a finite model.

Thank you for your attention!
Conclusion

- Higher-order model-checking \rightarrow verification of non-regular trees.
- Semantic methods allow to study the term generating them.
- Models of linear logic can be extended to capture parity conditions.
- The semantic of a term reflects whether it satisfies a given property.
- Decidability \rightarrow existence of a finite model.

Thank you for your attention!