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Résumé

Dans cette thèse, nous envisageons des problèmes de model-checking d’ordre supérieur
à l’aide d’approches issues de la sémantique et de la logique. Le model-checking
d’ordre supérieur étudie la vérification de propriétés, exprimées en logique monadique
du second ordre, sur des arbres infinis générés par une classe de systèmes de réécriture
appelés schémas de récursion d’ordre supérieur. Ces systèmes sont équivalents au λ-
calcul simplement typé avec récursion, et peuvent donc être étudiés à l’aide d’outils
sémantiques.

Plus précisément, l’objet de cette thèse est de relier le model-checking d’ordre
supérieur à une série de concepts de premier plan en sémantique contemporaine,
tels que la logique linéaire et sa sémantique relationnelle, la logique linéaire indexée,
les lois distributives entre comonades, les comonades paramétrées et la logique ten-
sorielle. Nous verrons que ces concepts contribuent de façon particulièrement na-
turelle à l’étude du model-checking d’ordre supérieur.

Notre approche débute par une étude du système de types intersection de Koba-
yashi et Ong, qui permet de typer un schéma de récursion d’ordre supérieur avec les
états d’un automate donné encodant une formule de la logique monadique du second
ordre. Le schéma admet pour type l’état initial de l’automate si et seulement si l’arbre
infini qu’il représente satisfait la propriété encodée par l’automate. En dépit de cette
adéquation, le système de types de Kobayashi et Ong a été pensé indépendamment de
la connexion existant entre les types intersections et les modèles de la logique linéaire,
relation observée par Bucciarelli, Ehrhard, de Carvalho et Terui. Nous avons donc
cherché à relier ces deux domaines.

Notre analyse nous a permis de définir un système de types intersection dérivé de
celui de Kobayashi et Ong, capturant lui aussi le model-checking d’ordre supérieur
de façon adéquate. Contrairement au système original, notre système est formulé de
façon modale, et correspond à une sémantique finitaire de la logique linéaire obtenue
en composant la modalité exponentielle usuelle avec une comonade colorant les for-
mules. Nous équipons cette sémantique de la logique linéaire avec un opérateur de
point fixe inductif-coinductif, et obtenons ainsi un modèle du λ-calcul avec récursion
dans lequel l’interprétation d’un schéma de récursion d’ordre supérieur est l’ensemble
des états depuis lesquels l’arbre infini qu’il représente est accepté. La finitude de la
sémantique nous permet de donner de nouvelles preuves de plusieurs résultats de dé-
cidabilité pour des problèmes de model-checking d’ordre supérieur, dont le problème
de la sélection formulé récemment par Carayol et Serre.

La sémantique finitaire que nous définissons est inspirée du théorème d’écrasement
extensionnel d’Ehrhard, qui montre que l’écrasement extensionnel du modèle relation-
nel de la logique linéaire correspond à sa sémantique finitaire donnée par le modèle
de Scott. Ce résultat nous permet de définir dans un premier temps la comonade de
coloration et l’opérateur de point fixe inductif-coinductif dans une sémantique quan-
titative correspondant à une variante infinie (et non-continue) du modèle relationnel
de la logique linéaire.
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Abstract

This thesis studies problems of higher-order model-checking from a semantic and
logical perspective. Higher-order model-checking is concerned with the verification
of properties expressed in monadic second-order logic, specified over infinite trees
generated by a class of rewriting systems called higher-order recursion schemes. These
systems are equivalent to simply-typed λ-terms with recursion, and can therefore be
studied using semantic methods.

The more specific purpose of this thesis is to connect higher-order model-checking
to a series of advanced ideas in contemporary semantics, such as linear logic and
its relational semantics, indexed linear logic, distributive laws between comonads,
parametric comonads and tensorial logic. As we will see, all these ingredients meet
and combine surprisingly well with higher-order model-checking.

The starting point of our approach is the study of the intersection type system
of Kobayashi and Ong. This intersection type system enables one to type a higher-
order recursion scheme with states of a given automaton, associated with a formula
of monadic second-order logic. The recursion scheme is typable with the initial state
of the automaton if and only if the infinite tree it represents satisfies the formula of
interest. In spite of this soundness-and-completeness result, the original type system
by Kobayashi and Ong was not designed with the connection between intersection
types and models of linear logic observed by Bucciarelli, Ehrhard, de Carvalho and
Terui in mind. Our work has thus been to connect these two fields.

Our analysis leads us to the definition of an alternative intersection type system,
which enjoys a similar soundness-and-completeness theorem with respect to higher-
order model-checking. In contrast to the original type system by Kobayashi and Ong,
our modal formulation is the proof-theoretic counterpart of a finitary semantics of
linear logic, obtained by composing the traditional exponential modality with a col-
oring comonad. We equip the semantics of linear logic with an inductive-coinductive
fixpoint operator. We obtain in this way a model of the λ-calculus with recursion in
which the interpretation of a higher-order recursion scheme is the set of states from
which the infinite tree it represents is accepted. The finiteness of the semantics en-
ables us to reestablish several results of decidability for higher-order model-checking
problems, among which the selection problem recently formulated and proved by
Carayol and Serre.

This finitary semantics are inspired from the extensional collapse theorem of
Ehrhard, who shows that the relational semantics of linear logic collapses exten-
sionally to the finitary semantics provided by Scott lattices. For that reason, we
start in a preliminary approach to define the coloring comonad and the inductive-
coinductive fixpoint operator in the quantitative semantics provided by an infinitary
(and non-continuous) version of the relational model of linear logic.
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Chapter 1

Introduction

1.1 A semantic approach to higher-order
model-checking

In a world in which automated processes play an increasingly important rôle,
notably in critical systems, software reliability is an essential issue. Among the
various techniques used to improve the reliability of the high-level as well as
low-level code are

• semantics, which studies the mathematical structure and modeling of
software programming,

• program verification, whose aim is to check whether a given program
satisfies a given logical specification.

A key method in verification is model-checking, introduced in the eighties by
Clarke, Emerson and Sifakis [CE81, QS82]. The main idea is to reason not
on the original program itself, but to build an abstract model of this program,
keeping only some of its original features. For instance, the abstract model may
consider the conditional if statements no longer as computable expressions,
but as uninterpreted constants. In this case, the model will typically be a
tree, in which branching indicates the potential execution traces resulting of
the evaluation of the if statement in the original program. This abstraction
of the original program enables one to consider models which are not Turing-
complete, and over which the satisfiability of properties expressed in adequate
logics may be decidable. The ultimate goal of model-checking is to determine
automatically whether the abstracted program has the property of interest.
At first, finite models were thus considered, as finite graphs for instance; but
in the second part of the nineties the focus of the model-checking community
moved to finitely presentable infinite models – as infinite trees generated by
pushdown systems for instance [Wal96,BEM97].

Higher-order model-checking. The successful emergence of higher-order
programming languages – such as C++, Haskell, OCaml, Javascript, Python,
or Scala – is a real challenge for program verification, notably due to the pres-
ence of higher-order recursion. In these languages, a function may receive other
functions as inputs, a typical example being the function map using a function
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14 CHAPTER 1. INTRODUCTION

A → A and a list of elements of A to output the list obtained by applying
the function to every element of the input list. An abstract model for such
programs is higher-order recursion schemes (HORS). They originate from Ni-
vat’s recursive program schemes [Niv72] which intended at giving a semantics
to LISP programs. These recursive schemes were extended to higher-order by
Damm [Dam77a,Dam77b] in order to model ALGOL 68 programs, a step which
led to the definition of higher-order recursion schemes.

Let us explain informally how these higher-order recursion schemes act as
models of programs, and at the same time as finite representations of the
possibly infinite trees of their execution traces. Consider a very simple program
which receives a connection of a client and builds a list of all the data it receives
until the connection is closed for some reason. This program can be abstracted
as the following HORS:

G1 =

{
S = L Nil

L x = if x (L (data x))

S is the start symbol, and can be understood as the representation of the main
function of the program. It calls L, which represents a function listen, on
a representation of the empty list. In this abstraction of the program, the
conditional statement if is treated as a constant: it is just a symbol which is
used to compute a tree of execution traces of the original program. We also
abstract the precise data that was received as a constant symbol data. The
HORS G1 defines a rewriting system, which starts from the start symbol S
and applies infinitely the rules of the recursion scheme, see Figure 3.6 on p.69
for details. This process computes the following infinite tree, whose maximal
branches describe the set of traces of executions of the original program:

T1 =

if

if

if

...data

data

Nil

data

Nil

Nil

In spite of the simplicity of G1, this tree is not regular: it can not be represented
as the unfolding of a finite graph. In fact, it was remarked in the early 2000s
that the infinite trees with finite representation typically studied in model-
checking could be represented by classes of higher-order recursion schemes.
These recursion schemes are in particular deeply related to pushdown systems.
It was thus compelling to study the model-checking of the infinite trees they
represent, but for which logic?

Given a model, the choice of a logic to describe its properties requires
to consider a trade-off between expressivity and complexity. In the case of
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infinite trees, monadic second-order logic (MSO) is a logic of choice, as its
model-checking is decidable over the complete binary tree [Rab69] but also
on infinite graphs generated by pushdown structures [MS85]. It is therefore
appealing to consider the following local higher-order model-checking problem:
given an MSO formula ϕ and a higher-order recursion scheme G, does ϕ hold
at the root of the infinite tree 〈 G 〉 represented by G? The first decidability
proof was given in 2001 for order-2 safe recursion schemes by Knapik, Niwin-
ski and Urzyczyn [KNU01], and then extended to all safe schemes in 2002 by
the same authors [KNU02]. At the same time, Caucal proved this result us-
ing a different representation of the trees generated by higher-order recursion
schemes [Cau02]. A first step towards the relaxation of the safety hypothesis
was made in 2005 by Knapik, Niwinski, Urzyczyn and Walukiewicz [KNUW05]
and independently by Aehlig, de Miranda and Ong [AdMO05]. Both ap-
proaches prove the decidability of MSO over the trees produced by order-
2 recursion schemes, would they be safe or not. In 2006, Aehlig restricted
the expressive power of the logic instead of the one of the recursion schemes,
and proved that the satisfiability of MSO properties expressible by means of
trivial alternating parity automata is decidable at the root of trees generated
by all higher-order recursion schemes [Aeh06]. The same year, Ong gave the
first general decidability proof of the local higher-order model-checking prob-
lem [Ong06], using a game semantics-based study of the recursion scheme.
This result has been established a number of times since then, using different
techniques. They are listed in our related works section (§1.2).

From the early times of model-checking, two more elaborate problems have
been considered, namely global model-checking, which consists in computing
a finite representation of the set of nodes satisfying the formula of interest,
and witness generation. For higher-order recursion schemes, Carayol and Serre
formulated such a witness generation property under the name of MSO selec-
tion [CS12]. It was reformulated automata-theoretically by Haddad in his PhD
thesis [Had13b]: given a HORS G and an MSO formula ϕ, represented as an
equivalent alternating parity tree automaton (APT) A, the selection problem
is to compute effectively a finite representation of an accepting execution of
the automaton A over the infinite tree 〈 G 〉.

In this thesis, we explain how tree automata theory and the verification
of infinite systems is somewhat surprisingly related to the stream of ideas
which emerged from the discovery in the late eighties of linear logic by Jean-
Yves Girard [Gir87]: the relational semantics of linear logic and its connec-
tion to Bucciarelli and Ehrhard’s indexed linear logic [BE00, BE01], the for-
mal definition of the exponential modality in these models, Ehrhard’s ex-
tensional collapse theorems [Ehr12a, Ehr12b], and finally Melliès’ tensorial
logic [MT10, Mel12, Mel16b]. Our approach notably leads us to a semantic
resolution of the selection problem of Carayol and Serre.

Automata, algebraic recognition, and type systems. The notion of
alternating parity tree automaton plays a central rôle in this thesis, as an
automata-theoretic counterpart to monadic second-order logic formulas. Such
an automaton is a non-deterministic tree automaton enriched with alternation
and a discrimination of accepting and rejecting executions with respect to the
parity condition. Before giving more details on these two features, let us con-
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sider the simplest model-checking problem: we model an execution trace of
a program as a word over an alphabet of actions, and the property to check
is encoded as a finite automaton. For instance, we may consider the word of
actions

open · read · write · close (1.1)

and check whether every read is immediately followed by a write using an
automaton of states q0 and qr, the first being the initial and final state. The
transition function, as expected, notably contains

δ(q0, read) = qr δ(qr, write) = q0

As a preliminary to the treatment of the case of alternating automata, let us
recall that the Church encoding defines a correspondence between trees over a
signature Σ and simply-typed λ-terms of ground type over the same signature,
considered modulo βη-conversion. Let us explain this correspondence in the
case of words, which correspond to trees with unary and nullary nodes. We
consider a signature Σ of first-order symbols of arity 0 or 1 – the symbols of
arity 0 being precisely the final letters of words. For instance, the word (1.1)
is defined over the signature

Σ = { open : 1, read : 1, write : 1, close : 0 }

meaning that close is a final letter. The Church encoding of the letter close
is the λ-term close of simple type o, and the Church encoding of the letter
read is the λ-term read of simple type o → o. More generally, every word
w over the signature Σ is translated as a λ-term {|w |} of simple type o, and
the concatenation of letters at the beginning of a word corresponds to the
application of λ-terms:

{| read · w |} = read ( {|w |} ) and {| write · w |} = write ( {|w |} )

The transition function may be understood as a type refinement: the transition

δ(q0, read) = qr

amounts to attributing to the λ-term read the refined type

read : qr → q0

expressing the fact that if the λ-term {|w |} is accepted from qr, then the λ-
term read ( {|w |} ) is accepted from q0. In the type-theoretic reformulation
allowed by this Church encoding, executions of the automaton over the word
w correspond to typing derivations of the word {|w |}, as for instance:

` open : q0 → q0

` read : qr → q0

` write : q0 → qr ` close : q0

` write ( close ) : qr

` read ( write ( close ) ) : q0

` open ( read ( write ( close ) ) ) : q0

A great advantage of this type-theoretic view is that it naturally lifts to
higher-order: it is straightforward to design a type system in which the tran-
sition function of the automaton provides the typings of constants, all other
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rules being standard. Subject reduction and expansion hold, and allow us to
prove that the refined type a term admits is an invariant of the computation, so
that a term computing a word has type q0 if and only if the word it represents
is accepted by the finite automaton of interest: typing enables us to reason
directly on programs computing words, without executing them. This idea will
be crucial for higher-order recursion schemes: instead of considering infinite ex-
ecutions of automata over trees produced by infinite computations, we will lift,
using type systems, the properties of automata to higher-order types, and per-
form model-checking directly on the finite representation the recursion scheme
is. The idea of relating tree automata with type systems appears in the work
of Hosoya, Vouillon and Pierce on languages for XML processing [HVP05], and
was adapted for the first time to higher-order recursion schemes by Kobayashi
in [Kob09b].

Another interesting point of view is the one of recognition by homomor-
phism: recall that, given a language L ⊆ A∗, there exists a finite automaton A
recognizing L if and only if there exists a finite monoid M , a subset K ⊆ M
and a homomorphism

ϕ : A∗ →M

such that
L = ϕ−1(K).

In other words, there is an algebraic structure in which we interpret words,
and their interpretations determine whether they belong to the regular lan-
guage L. A nice and deep idea, appearing independently in Aehlig’s [Aeh06]
and in Salvati’s work [Sal09], is then to look for an extension to terms — and
then to higher-order recursion schemes, which are equivalent to a certain class
of simply-typed λ-terms with recursion — of this idea of recognition by ho-
momorphism. The interpretation is no longer computed in monoids, but in
finite domains, which are algebraic structures adapted to the interpretation of
terms and of higher-order recursion; these structures are naturally connected
to some refined intersection type systems. In the simple case of finite words,
the interpretation of a word in the model can be understood as the set of states
from which it is accepted by the automaton; and this set coincides with the
set of refined types the word admits. Aehlig’s approach [Aeh06] extends to
higher-order types the idea that a tree automaton divides the set of infinite
trees into finitely many classes, and obtains in this way a finite semantics for
λ-terms with recursion. Salvati uses connections between finite domain theory
and intersection type theory to define a notion of tree automata executing on
λ-terms without recursion [Sal09]. He also studies the closure properties of
these automata.

From these considerations, it appears that there is a real and difficult chal-
lenge to establish decidability of higher-order model-checking by constructing
a denotational interpretation of λ-terms with recursion in a way meaningful
to model-checking and alternating tree automata endowed with parity condi-
tion. This is precisely what will be achieved in this thesis: guided by intuitions
coming from the relational semantics of linear logic, we will construct a deno-
tational semantics where the interpretation of a lambda-term is precisely the
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set of its refined types; and where this set of refined types reflects the infinitary
and inductive-coinductive behavior of the lambda-term.

Intersection types and models of linear logic. In a first step, we focus on
alternating tree automata – also called trivial APT, for that they are essentially
APT without the parity condition. A typical transition of such a top-down
automaton is

δ(q0, if) = (2, q0) ∧ (2, q1) (1.2)

meaning that the automaton executes with state q0 on a copy of the second
child of the if node, and with state q1 on another copy of this second child.
As it does not require to visit the first child, it simply drops the subtree rooted
at it. The effect of an execution of this transition on the infinite tree T1 is:

if q0

if

if

...data

data

Nil

data

Nil

Nil

−→Aϕ

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil

Using the correspondence between λ-terms and trees again, we can see if as
a constant of simple type o → o → o. Aehlig’s semantic investigation [Aeh06]
of the model-checking of properties described by alternating tree automata
over trees finitely represented by HORS was reformulated type-theoretically
by Kobayashi [Kob09b], the main idea being that the transition (1.2) can be
seen as a refined intersection type for if:

if : ∅ →
∧

i∈{0,1}

qi → q0 :: o→ o→ o (1.3)

where the intersection type

∅ →
∧

i∈{0,1}

qi → q0

expresses the fact that given any tree T1 and a tree T2 accepted from states q0

and q1, the tree if T1 T2 is accepted from q0. In the corresponding intersection
type system, this is proved by the derivation:

δ ∅ ` if : ∅ → (q0 ∧ q1)→ q0 ∅
App

∅ ` if T1 : (q0 ∧ q1)→ q0

...
Γ21 ` T2 : q0

...
Γ22 ` T2 : q1App

Γ21, Γ22 ` if T1 T2 : q0
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whose effect is exactly the one of the alternating automaton of interest: it
duplicates T2, to prove it accepted both from q0 and q1, and does not explore
T1 at all, as this subtree T1 does not need to be accepted from any state of
the automaton. Just as in the naive case of finite words and automata, the
typing of constants with intersection types lifts to higher-order types, leading
to a full type system for λ-terms. As a matter of fact, using this idea together
with a coinductive definition of types, Kobayashi established that the local
higher-order model-checking problem is decidable, for coinductive properties
expressed without the need for parity conditions. But let us stick to the simple
case of terms without recursion for now. It is particularly instructive to have
a closer look at the Application rule:

Γ ` t : (
∧n
i=1 θi )→ θ′ :: κ→ κ′ Γi ` u : θi :: κ for every i ∈ {1, . . . n}

Γ, Γ1, . . . , Γn ` t u : θ′ :: κ′
(1.4)

which, in a traditional sequent calculus, would decompose in two steps:

Γ ` t : (
∧n
i=1 θi )→ θ′ :: κ→ κ′

Γi ` u : θi :: κ for every i ∈ {1, . . . n}
Right

∧
Γ1, . . . , Γn ` u :

∧n
i=1 θi :: κ

App
Γ, Γ1, . . . , Γn ` t u : θ′ :: κ′

(1.5)
One main novelty of our work with respect to higher-order model-checking is
that we will see this introduction rule with the spectacles of linear logic — a
logic based on the linear decomposition of the intuitionistic arrow:

A⇒ B = !A( B

This fundamental property of linear logic means that every intuitionistic arrow
building a formula A⇒ B — or, under the Curry-Howard correspondence, the
simple type A→ B — can be understood as a two-step operation:

• The first step performs a number of duplications or erasures of its argu-
ment A: this is the effect of the modality ! on the formula A.

• The second step consists in a linear use of each element of !A: each copy
made in the previous step is used exactly once in the program of type
!A ( B we consider.

This two-step decomposition of the intuitionistic application A ⇒ B is strik-
ingly similar to the decomposition of the Application rule (1.4) as a pair of
introduction rules (1.5), and it turns out that intersection types relate very
precisely to models of linear logic. We need, however, to clarify the meaning
of the comma appearing between contexts in the Application rule (1.4): what
does

Γ, Γ1, . . . , Γn

mean? In particular, does

x : q0 :: o, x : q0 ∧ q1 :: o
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evaluate to
x : q0 ∧ q1 :: o

or to
x : q0 ∧ q0 ∧ q1 :: o ?

Both solutions are admissible. In the first case, we say that the intersection
type system is idempotent, and that it is non-idempotent in the second. These
two intersection type disciplines relate to semantics of linear logic:

• Idempotency amounts to considering the intersection operator as a rep-
resentation of a set of refined types: idempotent types relate to the Scott
semantics of linear logic, in which

[[A]] = Pfin([[A]]).

It should be emphasized that these Scott semantics feature order-theoretic
conditions which correspond, on the type-theoretic side, to the presence
of subtyping.

• Non-idempotency connects to the relational semantics of linear logic, in
which the exponential is interpreted using finite multisets, that is, finite
sets enriched with finite multiplicities of elements:

[[A]] = Mfin([[A]]).

In the non-idempotent case, the rule Right
∧

of the decomposition (1.5) cor-
responds in a precise sense to the Promotion rule of Bucciarelli and Ehrhard’s
indexed linear logic [BE00,BE01]. This variant of linear logic acts as a bridge
between non-idempotent intersection types and denotations of the relational
model of linear logic. Consider indeed the composition of a proof of the for-
mula !A with a proof of the formula !A( B. Indexation ensures that every
proof of A used to obtain !A by a Promotion rule has the same underlying
derivation tree — this corresponds, using the Curry-Howard correspondence,
to the fact that the intersection type associated with !A was built by taking the
intersection of typing derivations of a same term. Indexation therefore allows to
reflect in the logic the construction of intersection types, in a non-idempotent
way. Further investigations on the relation between non-idempotent type sys-
tems and the relational semantics were conducted by de Carvalho [dC09] and
appear in Ehrhard’s work [Ehr12a]. Relations between indexed linear logic and
higher-order model-checking are discussed in our paper with Melliès [GM15b].
A similar connection between idempotent intersection types and the Scott se-
mantics of linear logic appears both in Terui’s [Ter12] and Ehrhard’s [Ehr12a]
work. Note, however, that this connection is not associated to some indexed
variant of linear logic.

An important conceptual guideline of this thesis is Ehrhard’s extensional
collapse result, relating Scott semantics with the relational semantics. Infor-
mally, it means that forgetting the multiplicities appearing in the relational
denotations gives the denotations in the Scott semantics. To summarize, we
have the following picture, where the categories Rel! and ScottL! are the mod-
els of the λ-calculus induced by the relational and Scott models of linear logic:



1.1. A SEMANTIC APPROACH TO HIGHER-ORDER
MODEL-CHECKING 21

Rel!

Ehrhard

��

Bucciarelli−Ehrhard
de Carvalho

// Non-idempotent types

Ehrhard

��

oo

ScottL!
Ehrhard

Terui
// Idempotent typesoo

(1.6)

• North: the connection appears in Bucciarelli and Ehrhard’s work on in-
dexed linear logic [BE00, BE01], in which indexation relates the finite
multiset construction of the relational model of linear logic with the non-
idempotent intersection operator of intersection type theory. The charac-
terization of the relational semantics using a non-idempotent type system
also appears in de Carvalho’s work on the measure of the complexity of
head normalization using Krivine machines [dC09].

• South: this connection appears independently in Terui’s work on the
complexity of normalization of λ-terms of Boolean type [Ter12], and in
Ehrhard’s type-theoretic characterization of his extensional collapse the-
orem [Ehr12a],

• West : this arrow is the extensional collapse theorem of Ehrhard [Ehr12b],

• East : this type-theoretic counterpart of the extensional collapse theorem
represented by West is due to Ehrhard as well [Ehr12a].

In all four corners of this diagram, we can obtain a model-checking result:
given a term t computing a tree and a trivial APT A, there is an execution
of A from q over the normal form of t if and only if q ∈ [[t]] — or, in the
corresponding type system, if ∅ ` t : q :: o. It follows that both Rel!
and ScottL! are suitable categorical models for recognition by alternating tree
automata of λ-terms without recursion. Moreover, the existence of the finite
model (South-West corner of the diagram) implies that recognition is decidable.
Note that the decidability of recognition could also have been established using
the intersection type system with idempotent types (South-East corner of the
diagram).

Coloring annotations and the parity condition. To capture the whole
higher-order model-checking problem, we need to extend the picture (1.6) with

• the recursion of higher-order recursion schemes,

• and the parity condition of alternating parity automata.

The parity condition allows to encode in an automaton A properties mixing
inductive and coinductive behaviors. It is defined on execution trees of APT
by considering a coloring function Ω : Q→ N. On every infinite branch, since
there are finitely many states and thus finitely many colors, at least one of them
appears infinitely often. We consider the greatest such color. If it is even, we
declare the branch winning; otherwise, it is loosing. An execution tree of A is
winning precisely when all its infinite branches are. An APT has a winning
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execution over an infinite tree if and only if its root satisfies the associated
monadic second-order logic formula.

To capture this parity condition, Kobayashi and Ong [KO09] extend Koba-
yashi’s intersection type system with coloring annotations, and use the resulting
system to type the rules of higher-order recursion schemes. They define a par-
ity game Adamic(G,A) which models the recursion of the HORS G consistently
with the parity condition of the APT A; the idea is that Adam unfolds rules
of the recursion scheme, and Eve proves that she can always type the result-
ing term. Kobayashi and Ong obtain that Eve has a winning strategy in this
parity game if and only if there is a winning execution of A over the tree 〈 G 〉
represented by G. The decidability of finite parity games implies in turn the
decidability of the local model-checking problem.

In this thesis, following our approach with Melliès [GM15d], we propose a
variant of their type system in which the coloring annotation is turned into
a coloring modality of linear logic, leading to several important consequences,
as we will discuss. Before that, to understand the coloring modality, let us
consider a run-tree t with a hole, and set m the maximal color seen on the
finite path leading from the root of the tree – excluded – to the hole – included.
We introduce in [GM15d] a new, neutral color ε for the case where t = [ ],
corresponding to the absence of colors on the path. Then the type of t will
be �m q′ → q: the coloring modality reflects in the refined types the color
seen on the finite paths leading to holes. Informally, the fixpoint operator Y
of the λ-calculus with recursion will produce infinite branches of a run-tree by
composing infinitely many such trees, and will check that the parity condition
is respected by reading from the typing annotations the colors occurring along
the branches. The constants are typed according to the transition function of
the automaton: the transition (1.2) now corresponds to the annotated typing

if : ∅ →
∧

i∈{0,1}

�Ω(qi) qi → q0 :: o→ o→ o (1.7)

In the colored intersection type system we formulate in §6.3, the Application
rule is

Γ ` t : (
∧n
i=1 �mi θi )→ θ :: κ→ κ′ Γi ` u : θi :: κ for every i ∈ {1, . . . n}

Γ, �m1
Γ1, . . . , �mnΓn ` t u : θ :: κ′

where�miΓi means that every colorm appearing in Γi is updated to max(m,mi).
If we think of t and u as trees, the idea is that the maximal color seen from
the root of t[u[ ]] to a distinguished hole [ ] of u is the maximum of the color
seen from the root of t to the hole u is plugged in, and of the color seen from
the root of u to the hole of interest. The point is that this basic intuition on
trees lifts to higher-order types. This Application rule would decompose, in
the traditional sequent calculus of a modal logic (typically S4 or linear logic),
as

Γ ` t : (
∧n
i=1 �mi θi )→ θ

Γ1 ` u : θ1

�m1
Γ1 ` u : �m1

θ1 . . .

Γn ` u : θn Right �
�mn Γn ` u : �mn θ1 Right

∧
�m1

Γ1, . . . , �mnΓn ` u :
∧n
i=1 �mi θi

Γ, �m1
Γ1, . . . , �mnΓn ` t u : θ

(1.8)
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where the rule Right � is reminiscent of the Promotion rule for the exponential
in linear logic. In the variant we give of the Kobayashi-Ong type system, this
connection is tight: we observe that � satisfies the same comonadic principles
as the exponential modality [GM15d]. Moreover, the fact that we use the rules
Right � and Right

∧
in a row in the decomposition (1.8) suggests to compose

the exponential modality ! with the coloring modality �.
In the parity game Adamic(G,A) simulating the fixpoint in the approach

of Kobayashi and Ong, an assumption of uniformity is made: suppose that
several leaves of a typing proof introduce a same non-terminal F with a same
intersection type θ. If Adam plays F : θ, the game Adamic(G,A) will simulate
the unfolding of all the occurrences of F typed with θ, and Eve will provide
the same typing proof for each unfolding. Another interesting aspect of our
reformulation is that we relax this uniformity condition, as a first step towards
proof theory. Additionally, we internalize the parity fixpoint dynamics of the
game Adamic(G,A) directly in the type system by adding a fixpoint rule which
unfolds the rules of the recursion scheme, and by defining a parity condition on
typing derivations, lifting to higher-order types this parity condition tradition-
ally formulated over trees. This proof-theoretic reformulation is an important
step towards the formulation of an appropriate inductive-coinductive fixpoint
operator, based on the parity condition, in the denotational models of linear
logic we consider in this thesis.

Colored models of linear logic and higher-order model-checking. This
modal reformulation of the Kobayashi-Ong type system provides us with an
essential ingredient for extending the models of linear logic previously con-
sidered to models capturing the whole higher-order model-checking problem.
Semantically, the fact that � is a modality implies that we can define a cor-
responding comonad � in the semantics, which is parametrized in the sense
of Melliès [Mel06b,Mel14b]. In order to define a fixpoint reflecting the parity
condition of alternating parity automata in the semantics, and thus able to
iterate coinductively, one conceptual difficulty needs to be addressed in the
relational semantics: the traditional interpretation of !A in these semantics
is biased towards an inductive (rather than coinductive) interpretation of the
fixpoint operator Y. Technically speaking, this comes from the fact that the
multisets in !A are finite. For that reason, we develop in Chapter 9 an alterna-
tive relational semantics of linear logic where the exponential modality noted
A 7→  A is interpreted as the setM≤ω(A) of finite-or-countable multisets of el-
ements of A. In the resulting infinitary relational semantics, a distributive law
allows us to compose the exponential modality  with the coloring comonad �.
We obtain in this way a colored exponential modality    of linear logic, defined
as    =  ◦ �. The Kleisli construction applied to this colored exponential
provides us with a denotational model of the λ-calculus, which can be extended
with an inductive-coinductive fixpoint operator, iterating inductively or coin-
ductively depending on the color of the element it considers. We conjecture
that this infinitary model allows to recognize MSO properties over infinite trees
represented by higher-order recursion schemes.

Taking Ehrhard’s extensional collapse theorem as a guideline, we extend
the Scott model of linear logic with a coloring comonad and a distributive law
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between ! and �. This distributive law enables us to define a colored exponen-
tial    = ! ◦ � and an inductive-coinductive fixpoint lifting the corresponding
constructions of our infinitary relational semantics. We then shift to the idem-
potent intersection type systems of Terui [Ter12] and Ehrhard [Ehr12a] and
equip them with coloring and an inductive-coinductive fixpoint operator Y .
We also introduce a Scott colored semantics and we prove that it is equivalent
in a precise sense with the colored and idempotent intersection type system just
obtained. By revising Kobayashi and Ong’s original type system (our system
differs in some key aspects from their original system, and is not equivalent to
it) we are able to reflect the recognition of a higher-order recursion scheme by
an alternating parity tree automaton just by looking at the interpretation of
the higher-order recursion scheme (seen as an equivalent λ-term with fixpoint
Y ) in the finitary and colored Scott semantics. The decidability of the local
higher-order model-checking problem follows, as the interpretation of a HORS
is always computed in finite time. In fact, the finiteness of the semantics has
stronger implications: it allows us to prove the decidability of the selection
problem, which follows from a form of regularity of the semantics: any denota-
tion of a λY -term can be obtained from a finitely representable computation;
and this finite representation can be formulated in the language of higher-order
recursion schemes. The finitary model we obtain is close to the finitary model
independently defined by Salvati and Walukiewicz [SW15a], and that they used
to prove the decidability of the local higher-order model-checking problem, as
well as a transfer theorem we detail on the related works (§1.2).

As it appears in this introduction, this thesis uses the unifying power of
linear logic and of contemporary semantics to connect

• the theory of intersection types for MSO recognition formulated by Ko-
bayashi and Ong in [KO09],

• the proof-theoretic approach of Bucciarelli and Ehrhard, relating non-
idempotent intersection type theory with the relational semantics of lin-
ear logic using indexed linear logic [BE00,BE01],

• and the semantic approach of Salvati and Walukiewicz using finite do-
mains for MSO recognition [SW15a].

1.2 Related works

In addition to the articles we cited in this introduction, we give an overview
of the different proofs of decidability of the higher-order model-checking prob-
lems, and discuss infinitary extensions of linear logic related to the infinitary
relational semantics we introduce in Chapter 9.

1.2.1 Decidability of higher-order model-checking problems

Early results. The first result on higher-order model-checking dates back
from 2001; it is due to Knapik, Niwinski and Urzyczyn [KNU01], and proves the
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decidability of monadic second-order logic over the trees produced by order-2
safe recursion schemes. Safety is a restriction on higher-order recursion schemes
which appeared first in Damm’s work [Dam82], and was rephrased in [KNU01].
It was expressed on λ-terms by Blum and Ong [BO09], who remarked that in
this safe fragment of the λ-calculus, the usual capture-avoiding substitution
can be harmlessly replaced with syntactic substitution.

Knapik, Niwinski and Urzyczyn extended their result in 2002 to the de-
cidability of monadic second-order logic over the trees produced by all safe
higher-order recursion schemes [KNU02]. Their result proceeds by a transla-
tion of safe HORS to higher-order pushdown automata (abbreviated as PDA).
Relaxing the safety condition on HORS requires to extend PDA with a collapse
operation [Par12].

An alternative approach was developed by Caucal who introduced in [Cau02]
two infinite hierarchies, one made of infinite trees and the other made of
infinite graphs, defined by means of two simple transformations: unfolding,
which goes from graphs to trees, and inverse rational mapping (or MSO-
interpretation [CW03]), which goes from trees to graphs. He showed that
the tree hierarchy coincides with the trees generated by safe schemes.

A first step towards CPDA was made in 2005, in two independent papers
proving the decidability of MSO over trees generated by all order-2 HORS,
would they be safe or not. The first one is by Knapik, Niwinski, Urzy-
czyn and Walukiewicz [KNUW05], the second one by Aehlig, de Miranda and
Ong [AdMO05]. These approaches rely on translations of HORS respectively
to panic automata and to automata with links.

In 2006, Aehlig proved that the MSO properties expressible by means of
tree automata with trivial acceptance conditions were decidable on the trees
produced by all HORS [Aeh06], see also the long version [Aeh07]. His approach
relies on the construction of a finite model for evaluating recursion schemes,
and was expressed as an intersection type system for verification by Kobaya-
shi [Kob09b], who used this type-theoretic translation to design a practical
model-checker.

Local decidability (first proof). The first decidability proof of the local
model-checking problem was given in 2006 by Ong [Ong06], see also the long
version [Ong], and relies on game semantics. This article uses a result relating
traversals, which are infinite explorations corresponding to the head normaliza-
tion of a λ-term t(G) associated with the recursion scheme G of interest,1 with
the branches of the value tree 〈 G 〉. This correspondence is proved in [Ong15].
Given an APT A running over the same signature as G, Ong defines another
APT B running on terms with constants in Σ, and he relates the existence of
a winning run-tree of A over 〈 G 〉 with the one of a winning run-tree of B over
t(G). Since t(G) is a regular tree, it admits a representation as a finite graph
and the existence of a winning run-tree of B over it can thus be decided, as
it amounts to solving a finite parity game. The complexity of the problem,

1Actually, it would be more precise to say that t(G) is the infinite λ-term corresponding
to a frozen form of the β-normal η-long form of G. By frozen, we mean that every redex
(λx .t) u is replaced with @ (λx .t) u, where @ is a constant representing applications. As
a result, t(G) is an infinite term in β-normal η-long form, which can be analyzed in game
semantics using innocent strategies.
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namely n-EXPTIME, follows from the size of B and thus of the parity game.

Local decidability (second proof). The second proof, given in 2008 by
Hague, Murawski, Ong and Serre [HMOS08], translates higher-order recursion
schemes to collapsible pushdown automata (CPDA), a class of automata with
higher-order stacks – stacks of stacks of stacks. . . of symbols – in which the sym-
bols contain pointers to stacks below them and featuring a collapse operation,
which removes all the stacks above the target of the pointer of the topmost
symbol. This collapse operation strictly extends the expressive power of the
automaton, as proved by Parys [Par12]. The authors show that CPDA can be
used to generate the same trees as HORS; the way the translation uses CPDA
is reminiscent of the evaluation mechanism of the Krivine machine. They then
translate the local model-checking problem to a parity game over the infinite
configuration graph over CPDA. A procedure of order reduction, inspired from
the treatment of order 1 by Walukiewicz [Wal01], allows to translate the game
over the configuration graph of a CPDA of order n to such a game for a CPDA
of order n − 1 at the price of an exponential blowup of its size. An iterated
application of this procedure allows to reduce to order 0, and to obtain in
this way a finite graph over which the parity game is decidable. A presentation
of [Ong06] and of [HMOS08] can be found in the author’s Master thesis [Gre10].

Local decidability (third proof). The third proof, given in 2009 by Koba-
yashi and Ong [KO09], extends the approach of Kobayashi [Kob09b] in which
the model-checking of properties modelled by tree automata with trivial accep-
tance conditions over infinite trees generated by HORS is solved by means of
intersection types. The analysis of these two articles is central in this thesis;
the use of intersection types, introduced in [Kob09b], is motivated in the in-
troduction of Chapter 5, and the approach of [KO09] is presented in §6.1 and
refined in Chapter 6.

Global decidability (first proof). In 2010, the global higher-order model-
checking problem was introduced by Broadbent, Carayol, Ong and Serre in
[BCOS10], under the name of logical reflection. The authors prove the decid-
ability of the problem by translating HORS to CPDA and by analyzing the
structure of the set of winning positions on the infinite parity game generated
from the configurations of the automaton. From this analysis follows the decid-
ability of the global HOMC problem. It should be noted that the annotation
with • of the symbols of Σ appearing in 〈 G 〉 at positions where the formula of
interest is satisfied is performed on the CPDA, and then translated back to a
HORS.

Global decidability (second proof). In [SW11] (see also the long ver-
sion [SW14]), Salvati and Walukiewicz use Krivine machines to evaluate λY -
terms. They design an infinitary parity game over the infinite set of configura-
tions of the machine, which synchronizes the evaluation of the parity automaton
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of interest with the head computation of a branch of the normal form of the
λY -term of interest. They then collapse this infinite parity game to an equiv-
alent finite parity game, leading to a decidability proof of the local and global
higher-order model-checking problems.

Selection problem (first proof). The selection problem was introduced,
and proved decidable, by Carayol and Serre in 2012 [CS12]. It relies again
on a translation between HORS and CPDA, but this translation differs from
the one of [HMOS08] and seems more effective, even if the original translation
could have been used as well to prove the decidability of the selection problem.
As in [BCOS10], the transformation is not performed on the recursion scheme,
but on the equivalent automaton.

Selection problem (second proof). In the approach of Carayol and Serre,
the annotated HORS obtained by the effective selection procedure can differ a
lot from the original one. This led Haddad to study shape-preserving transfor-
mations of higher-order recursion schemes [Had13a,Had13b]: by an analysis of
the type-theoretic result of Kobayashi and Ong, he extracts a transformation
directly on recursion schemes solving the selection problem.

Transfer theorem (first proof). In [SW13a], Salvati and Walukiewicz use
again a parity game on the configurations of a Krivine machine to prove their
transfer theorem, which states that:

For every formula ϕ of monadic second-order logic, there exists an
MSO formula ϕ̂ such that, for every infinite term t (thus including
λY -terms), ϕ holds at the root of the normal form of t if and only
if ϕ̂ holds at the root of t.

In other terms, an MSO formula ϕ over Σ-labelled ranked infinite trees can be
lifted to an MSO formula ϕ̂ over simply-typed infinite terms (not necessarily
representable as finite terms with recursion), whose constants are in Σ. This
lifting is such that an infinite term t satisfies ϕ̂ if and only if its infinitary normal
form satisfies ϕ. Salvati and Walukiewicz notably show that this theorem
implies global – and thus local – higher-order model-checking.

Selection problem (third proof). Tsukada and Ong gave another proof
of the decidability of the selection problem in 2014 in [TO14], see also the long
version [TO]. Their approach follows from their quest for a cartesian closed
category of games, initiated in [OT12] where they introduce a two-level game
semantics for interpreting Kobayashi’s type system [Kob09b]. The idea is to
interpret terms at two levels at the same time, in a fibered way: in a base
category playing on the simple type, and in a refined category modelling inter-
section types. In [TO14], this approach is extended to two-level arenas with
effects and coeffects, for interpreting the parity condition or more generally an
ω-regular winning condition. This interpretation is connected to a formula-
tion of the Kobayashi-Ong type system which, interestingly, uses effects and
subtyping. The main differences with our approach are that they do not use
linear logic as a framework for model construction; that their model is based on
games, while ours is based on domains; and that they need to consider not only
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a comonad, but also an adjunct monad which is not required in our model. On
the other hand, their formulation allows to deal with all ω-regular conditions.
However, changing the winning condition of the fixpoint in our model would
probably allow to consider smoothly such alternative winning conditions.

Selection problem (fourth proof). Grellois and Melliès proved the de-
cidability of the selection problem in 2015 using an interpretation of higher-
order recursion schemes in a finitary model of linear logic, extended with a
coloring modality and a colored fixpoint operator [GM15a]. This result is the
culmination of a series of articles developped independently and in parallel
of the approaches of Tsukada and Ong and of Salvati and Walukiewicz. The
first connection between linear logic and higher-order model-checking appears
in [GM15b], in which the authors show that Kobayashi’s intersection type sys-
tem [Kob09b] can be translated into an equivalent non-idempotent type system,
which is in turn connected to the relational semantics of linear logic using in-
dexed linear logic. Motivated by their discovery of the modal nature of the
coloring operation of the Kobayashi-Ong type system, the authors introduce
an infinitary and colored variant of the usual relational semantics of linear logic,
enriched with an inductive-coinductive fixpoint operator [GM15c]. The design
of this fixpoint operator is inspired by the proof-theoretic reformulation of the
parity game introduced by Kobayashi and Ong in [KO09]. This reformulation
and the modal nature of the coloring annotation of the type system are ex-
plained in [GM15d]. Finally, Grellois and Melliès adapt the constructions of
the infinitary case to the finitary Scott semantics of linear logic, and obtain
a finitary model for the recognition of MSO properties over higher-order re-
cursion schemes in [GM15a]. This notably enables them to solve the selection
problem. Note that the modal nature of the coloring operation and the colored
Scott semantics, enriched with an inductive-coinductive fixpoint operator, were
presented by Melliès in 2014 [Mel14a].

Transfer theorem (second proof). Salvati and Walukiewicz gave another
proof of their transfer theorem in 2015, restricted this time to the case of λY -
terms, in [SW15a]. This article is the result of a series of articles by the authors
on the use of finitary models for recognizing λ-terms. The idea of interpreting
a term in a model to determine whether it is accepted by an automaton gen-
eralizes the traditional recognition by monoid for finite automata over words,
and appears already in Salvati’s 2009 work [Sal09]. Note that this idea appears
independently in Aehlig’s work [Aeh06] on finitary models for the recognition
of properties expressed by trivial APT over the value trees of higher-order re-
cursion schemes. In [SW13b], Salvati and Walukiewicz use Scott models to
interpret λY -terms, recursion being interpreted using the least fixpoint oper-
ator, and they show that these models allow to capture tree automata with
trivial acceptance condition. This result improves Aehlig’s [Aeh06] by consid-
ering insightful automata, which are able to detect whether a term has a head
normal form. Decidability follows from the finiteness of the interpretation of
each simple type. They extend their result to weak alternating automata, and
thus to weak MSO, in [SW15b]. In this goal, they need to add ranks – which
we called colors in this document – to the model, and to stratify the fixpoint
rule in an appropriate way: the rule is either the typical one for inductive, or
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coinductive fixpoint operators, depending on the current rank. Their analysis,
as ours, is based on a companion intersection type system. The use of inductive
and coinductive fixpoint rules differs from our approach, and from Tsukada and
Ong’s, both relying on a parity condition formulated on infinite plays. Such an
alternation of fixpoint rules however appears in Melliès’ 2014 model construc-
tion [Mel14a], and we conjecture that our model could be equivalently defined
using a stratification of fixpoints similar to the one of Melliès and of Salvati
and Walukiewicz.

They treat the full case of recognition of properties formulated in monadic
second-order logic in [SW15a]. The construction is more elaborated, as it
requires to fully model the coloring discipline. An aspect is reminiscent of
linear logic: to interpret a simple type, say o → o, they consider the finite
domain

Do→o = Ro → Do

where Do is simply P(Q), and Ro consists of sets of pairs (q, r) of a state
q together with a rank r such that r ≥ Ω(q). Such families of domains D
and R are defined for all simple types; we could think of the former as a
linear interpretation of the simple type, and of the latter as obtained using an
“exponential” modality. However, this domain-theoretic construction of Salvati
and Walukiewicz is based on the color management of the original type system
of Kobayashi and Ong [KO09], and notably does not introduce a neutral color ε
for interpreting the Axiom rule, but uses the color of the return state of the type
introduced by this rule. As such, the coloring operation is not a parametric
comonad, so that the construction lifting from D to R is not computed by
an exponential modality. In fact, their model is precisely built on the coloring
information given by the automaton of interest, while in our model this coloring
information could be decorrelated from the states of the automaton.

Another difference between their approach and ours lies in the fact that
they need to restrict the morphisms they consider to the monotone functions
satisfying a stratification property, which is a requirement on the color man-
agement during the composition of morphisms. It would be very interesting to
understand why this condition is necessary in their work but not in ours.

Our constructions also differ on their behavior on unproductive recursion
schemes, whose value trees contain the divergence symbol ⊥. In our approach,
this leads in the semantic run-tree built by Y to an infinite branch containing
only the neutral color ε after a finite prefix of other colors, so that the branch
is rejected and the semantic witness tree is as well. By contrast, their model
reflects Ω-even automata, which accept the divergence symbol if and only if it
is labelled with a state of even color.

We should also point out that in their model for MSO recognition, just as in
their approach for weak MSO [SW15b], Salvati and Walukiewicz use an alter-
nation of inductive and coinductive fixpoint operators to define their semantic
fixpoint Y, and not a parity condition on infinite semantic composition trees
as we do. We believe however that our definition would be equivalent to one
based on these two inductive and coinductive fixpoint operators.
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1.2.2 Infinitary variants of linear logic and of its semantics

The idea developed in Chapter 9 of shifting from the traditional finitary re-
lational semantics of linear logic to infinitary variants is far from new. The
closest to our work in this respect is probably the work by Miquel [Miq01]
where stable but non-continuous functions between coherence spaces are con-
sidered. However, our motivations are different, since we focus here on the case
of a modality  A defined by finite-or-countable multisets in A, which is indeed
crucial for higher-order model-checking, but is not considered by Miquel.

In another closely related line of work, Carraro, Ehrhard and Salibra [CES10]
formulate a general and possibly infinitary construction of the exponential
modality A 7→!A in the relational model of linear logic. However, the authors
make the extra finiteness assumption in [CES10] that the support of a possibly
infinite multiset in !A is necessarily finite. Seen from that prospect, one pur-
pose of our work is precisely to relax this finiteness condition which appears
to be too restrictive for our semantic account of higher-order model-checking
based on linear logic.

Coming back to linear logic, we would like to mention the works by Baelde
[Bae12] and Montelatici [Mon03] who developed infinitary variants (either inductive-
coinductive or recursive) of linear logic, with an emphasis on the syntactic
rather than semantic side.

1.3 Outline and summary of contributions

This thesis is divided into three parts and nine main chapters.

Part I introduces the core ingredients of higher-order model-checking. Chap-
ter 2 defines trees, two equivalent logics over them, namely monadic second-
order logic and the modal µ-calculus; and a companion automata model, al-
ternating parity tree automata, before ending with a quick reminder on parity
games. Chapter 3 recalls rudiments of simply-typed λ-calculus, and uses them
to define higher-order recursion schemes as well as the simply-typed exten-
sion of the λ-calculus with fixpoints. It states the three main problems of
higher-order model-checking, and explains why we can restrict our study to
productive higher-order recursion schemes. These two first chapters are essen-
tially a pedagogical contribution. Chapter 4 is also pedagogical, but includes
as well a small scientific contribution. We introduce informally corecursive
structures and coinduction, and we adapt existing frameworks of infinitary
rewriting to the case of higher-order recursion schemes. We obtain a coinduc-
tive and non-deterministic relation computing the executions of an alternating
tree automaton over the value tree of a recursion scheme.

Part II investigates and reformulates the intersection type systems for higher-
order model-checking of [Kob09b] and [KO09], revealing in this way a fruitful
connection with linear logic and its semantics. In Chapter 5, we study the pre-
liminary problem of the verification of properties expressed by alternating tree
automata (without parity) over finite trees generated by simply-typed λ-terms
(without recursion). We consider in a first time a non-idempotent variant of
the intersection type system of [Kob09b] which solves this problem, and hap-
pens to connect naturally to the relational semantics of linear logic. Following
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Ehrhard’s extensional collapse result [Ehr12b], we explain how this approach
can be recasted in a system of idempotent intersection types and in a qualita-
tive semantics of linear logic. In Chapter 6, we investigate the type system of
Kobayashi and Ong [KO09] in order to understand how the connection between
intersection types and models of linear logic exhibited in the previous chapter
could be accommodated with recursion and parity conditions. This leads us
to a redefinition of the original type system, disclosing the modal nature of
the coloring operation. We briefly explain the main ideas of our reformula-
tion of Kobayashi and Ong’s soundness-and-completeness proof, and formulate
remarks on potential extensions. We then add some more structural rules to
the system as a preliminary to the connections developed in Chapter 10. Our
adaptation of the soundness-and-completeness proof of Kobayashi and Ong to
our modal reformulation of their type system is split in two steps. Chapter 7
details the completeness proof, after emphasizing on its main concern: defining
an optimal strategy for Eve, indexed on the head reduction of the recursion
scheme. Chapter 8 contains the proof of soundness of the type system, which
notably requires a lemma from [KO]. Using our type-theoretic reformulation of
Kobayashi and Ong’s parity game, this lemma states that every infinite branch
of a run-tree of an alternating parity tree automaton over the value tree of a
recursion scheme comes from an infinite branch of the associated typing deriva-
tion in our modal type system extended with a parity fixpoint rule.

Part III exploits the results of Chapter 6 to define extensions of the two
models considered for finite terms in Chapter 5. In Chapter 9, we introduce an
infinitary and non-continuous extension of the traditional relational semantics,
in which we define a fixpoint mixing inductive and coinductive behavior. We
prove, after adapting the notion to models of linear logic, that it is a Conway
operator, meaning that it has the expected « good properties » of a fixpoint
operator. We conjecture that the infinitary model we obtain allows the recog-
nition of MSO properties over the infinite trees represented by higher-order
recursion schemes. In relation with this model, we introduce a colored and
infinitary extension of tensorial logic. In Chapter 10, we take advantage of
the conceptual guideline that Ehrhard’s extensional collapse result is to re-
formulate in the finitary Scott semantics of linear logic the constructions of
coloring comonad and of inductive-coinductive Conway operator performed in
the infinitary relational semantics. We introduce a type system reflecting the
computation of denotations in this model, and connect it to the type system
for higher-order model-checking we defined in Chapter 6. We then obtain a
semantic recognition theorem: the interpretation of a higher-order recursion
scheme G with respect to an alternating parity tree automaton A is the set
of states from which A accepts the infinite tree 〈 G 〉 represented by G. The
finiteness of the semantics leads to the decidability of the local higher-order
model-checking problem, but also to the decidability of the selection problem.

We conclude the thesis by a list of contributions and perspectives.





Part I

The higher-order model-checking
problem

33





Chapter 2

Logic and automata

As explained in the Introduction, the purpose of this thesis is to decide the
validity of logical formulas over infinite trees with a finite representation. In
this chapter, after defining labeled trees in §2.1, we briefly introduce the two
equivalent logics over them which will be under focus in this thesis, namely
monadic second-order logic (MSO), in §2.2, and modal µ-calculus, in §2.4. Prior
to the introduction of the latter, which involves fixpoint operators, we recall
the necessary elements of order theory in §2.3. We then introduce alternating
parity automata (APT), which are the automata-theoretic counterpart to both
these logics, in §2.5. Finally, we connect these parity automata to parity games
in §2.6, whose decidability on finite graphs is a key result in model-checking.

Additional references. In addition to the references appearing in this chap-
ter, we find useful to refer to [CDG+07] for additional notions on trees and
tree automata theory, to [DP90] for a more elaborate introduction to order
theory, to [AN01,Wil01,BW15] for more material on the connection between
µ-calculus, automata and parity games, and to [Tho96, GTW02] for a more
general connection between MSO, automata and games.

2.1 Trees, graphs

Before we start defining the logics used for the specification of properties in
higher-order model-checking, we find useful to recall the definition of an ele-
mentary, yet central notion in computer science: trees. They will appear under
several different forms in this thesis: as trees labeled with actions, approximat-
ing the set of behaviors of a program, as trees generated by the interaction of
an automaton with another tree, and as derivation trees, proving either judg-
ments in an appropriate logic, or type inferences. The trees we consider will
typically be labeled by a ranked alphabet.

Definition 1 (Ranked alphabet, signature). A ranked alphabet, or signature,
is a finite set Σ together with an arity function ar : Σ→ N.
If Σ = { ai | i ∈ I}, the signature defined by the arity function ar is often
denoted as { ai : ar(ai) | i ∈ I}

Definition 2 (Trees). • A tree t ⊆ N∗ is a prefix-closed set of finite words
on natural numbers.

35
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• Given a ranked alphabet Σ, a Σ-labeled tree is a function t : Dom(t)→ Σ
whose domain is a tree Dom(t).

• Given a ranked alphabet Σ, a Σ-labeled ranked tree is a Σ-labeled tree t
such that

∀α ∈ Dom(t), {i | α · i ∈ Dom(t)} = {1, . . . , ar(t(α))}

For a node α of a ranked tree t, the node α · i is often referred to as its
child, or successor, in direction i. It is denoted succi(α).

Σ-labeled trees not satisfying the last condition will often be explicitly called
unranked. In the definition we give, trees are of finite degree: each node has
finitely many successors. In the last chapters of this document, this constraint
will be relaxed, but until then all trees we consider are implicitly of finite
degree. Paths starting from the root are called branches:

Definition 3. A maximal branch b = i0 · · · in · · · of a tree t is a finite or
countable sequence of integers whose prefixes i0 · · · in are all in Dom(t), and
which, if finite, ends on a node without successor – if t is ranked, this implies
that ar(t(i0 · · · in)) = 0.

When not explicitly stated otherwise, we implicitly consider branches that
are maximal. In this thesis, we will consider trees with finite or countable
branches. Since our goal is to decide properties over such trees, it will be
crucial to have suitable finite representations of them. The most canonical
representation is perhaps given by regular trees, which are obtained by unfold-
ing Σ-labeled graphs:

Definition 4. Given a ranked alphabet Σ, set n = maxa∈Σ(ar(a)). A Σ-
labeled graph is then a tuple G =

(
V, (Ei)i∈{0,...,n−1}, λ

)
, where:

• V is a set of vertices

• λ : V → Σ is a labeling of vertices,

• for every i ∈ {0, . . . , n− 1}, Ei ⊆ V × V is a set such that for every
v ∈ V :

1. for every i ∈ { 0, . . . , ar(λ(v))− 1 }, there is a unique v′ ∈ V such
that (v, v′) ∈ Ei,

2. for every i ≥ ar(λ(v)), there is no vertice v′ such that (v, v′) ∈ Ei.

We say that the graph G is finite precisely when V is.

In other terms, a Σ-labeled graph is a generalization of Σ-labeled ranked
trees, where edges may “backtrack”. We will refer to successors and directions
in these graphs in the same way as for trees. We define the unfolding of a graph
G from a vertice v as the potentially infinite Σ-labeled ranked tree of paths of
G starting from v.

Definition 5 (Regular tree). A Σ-labeled ranked tree is regular if it has finitely
many subtrees. Equivalently, a Σ-labeled ranked tree is regular if and only if
it can be obtained as the unfolding of a finite Σ-labeled graph.



2.1. TREES, GRAPHS 37

Example 1. Consider the signature Σ1 = { if : 2, data : 1, Nil : 0 },
which can be understood as a set of actions. The Σ1-labeled tree T0 is ranked
and regular, as it can be obtained as the unfolding of the graph G0 starting
from the node labeled with if:

T0 =

if

if

if

...Nil

Nil

Nil
G0 = if

Nil

where in G0 the edge to Nil is in direction 0, and the backtracking one is in
direction 1. Contrary to T0, the tree T1 of the Introduction

T1 =

if

if

if

...data

data

Nil

data

Nil

Nil

is not regular: since its branches, except the rightmost, encode the natural
numbers, it has countably many distinct subtrees. A finite representation of
this tree can be obtained using higher-order recursion schemes, and will be
given in §3.2. This Σ1-labeled tree is ranked, unlike
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T1,dup =

if

if

if

...data

data

Nil

data

data

Nil

data

Nil

data

Nil

NilNil

which is obtained by duplicating the leftmost branch on each if node — a
behavior typical of alternating tree automata, see §2.5.

2.2 Monadic second-order logic

As explained in the Introduction, the purpose of a tree of actions such as T1 is
to model the set of potential executions of a program. Following the principles
of model-checking, the verification of a property over the program will be per-
formed on this abstract model. Over trees, a convenient and widely used logic
is monadic second order logic (MSO), since it is a well-balanced choice between
expressivity – it contains most other usual logics over trees – and decidability:
the satisfiability of a formula is decidable for infinite structures of interest, such
as the complete infinite binary tree [Rab69]. However, in higher-order program
verification, our goal will not be to determine whether a given formula has a
model, that is, whether there exists some tree satisfying it, but to determine
whether a given tree satisfies a given formula. In this section, we provide a
short and mostly informal introduction to MSO; more emphasis will be put on
modal µ-calculus in §2.4, for reasons which will appear shortly.

MSO is an extension of first-order logic with second-order unary quantifi-
cation, that is, quantification over sets. Given a ranked alphabet Σ, a unary
predicate a is introduced for every symbol a ∈ Σ; this predicate is true on
nodes labeled with a. The choice of a Σ-labeled ranked tree t then induces a
family of relations succi, relating a node to its successor in direction i, if any,
as well as a relation succ defined as the union of the former, and a relation <
obtained by iterating succ at least once. The MSO formulas over t are then
defined by the grammar

ϕ ::= x | X | x = y | x < y | succ(x, y) | succi(x, y) | x ∈ X | X ⊆ Y
| a(x)| ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | ∃x. ϕ | ∀x. ϕ | ∃X.ϕ | ∀X.ϕ

In this setting, first-order variables x correspond to nodes of the tree we
consider, while second-order variables X represent sets of nodes. For instance,
x < y is true if and only if the node y belongs to the subtree rooted at x, while
succi(x, y) holds if and only if y is the successor in direction i of x.
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The presentation of MSO we give is redundant, for convenience. The for-
mula X ⊆ Y could be obtained from ∀x ∈ X x ∈ Y , while < and succ may
be defined from the family of relations succi.

Example 2. Consider the tree T1 of Example 1. We define root ∈ X as
∀x (∀y x 6= y ⇒ ¬ ( y < x )) ⇒ x ∈ X. We may characterize the existence of
an infinite branch labeled only with the symbol if using the MSO formula

ϕM1,coind = ∃X. ( root ∈ X ∧ ∀x ∈ X. ( if(x) ∧ (∃y ∈ X. succ(x, y) ) ) )

which is true if and only if the Σ1-labeled ranked tree considered contains a set
X of nodes all labeled with if, and all admitting a successor with the same
property.

Monadic second-order logic can be more generally defined on transition
systems, as graphs for instance. It notably allows to distinguish T0 from G0,
using the formula

∃x. succ(x, x)

which is true on the node labeled with if of G0 (of Example 1), but nowhere
in T0, since by definition a tree does not contain loops. However, these two
structures are bisimilar:

Definition 6 (Bisimulation, bisimilarity). Given a signature Σ and two Σ-
labeled graphs G =

(
V, (Ei)i∈{1,...,n}, λ

)
and G′ =

(
V ′, (E′i)i∈{1,...,n}, λ

′ )
a bisimulation is a relation ≡ such that for every (v, v′) ∈ V × V ′, we have
that v ≡ v′ if and only if

• λ(v) = λ′(v′),

• and for every i ∈ { 1, . . . , ar(λ(v1)) }, succi(v) ≡ succi(v′).

G and G′ are bisimilar if and only if there exist a bisimulation ≡ between
them, and (v0, v

′
0) ∈ V × V ′ such that v0 ≡ v′0.

As a consequence, MSO is not closed under bisimulation: a graph and its
unfolding, yet bisimilar, will not always satisfy the same formulas. However,
since in this thesis we focus on logical formulas over trees, we can restrict
ourselves to the bisimulation-invariant fragment of MSO, that is to formulas
which do not have different truth values over bisimilar structures. We will
consider in the sequel formulas specified in modal µ-calculus, defined in §2.4,
which are equivalent in this framework:

Theorem 1 ( [Niw88]). Monadic second-order logic and the modal µ-calculus
are equi-expressive over trees: for every formula ϕ of monadic second-order
logic, there is an equivalent formula ϕµ of the modal µ-calculus such that ϕ
holds at the root of a tree if and only if ϕµ does.

Conversely, for every formula ϕ of the modal µ-calculus, there is an equiva-
lent formula ϕMSO of monadic second-order logic such that ϕ holds at the root
of a tree if and only if ϕMSO does.

Note that this result, which will be sufficient for our work, can be extended:
any MSO formula which does not distinguish bisimilar structures can be trans-
lated to an equivalent formula of the modal µ-calculus, and conversely [JW96].
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As we will see soon, modal µ-calculus allows to describe finite sets over binary
trees of finite degree and of at most countable depth; in this setting, a finiteness
predicate is definable in MSO as well [Cou97, Proposition 3.7].

The next two sections are devoted to the introduction of the modal µ-
calculus, which we will prefer to MSO in this thesis. Before ending this section,
let us mention an interesting fragment of monadic second-order logic, weak
MSO , obtained from MSO by restricting quantification to finite sets.

2.3 Preliminaries on order theory

Both syntax and semantics of the modal µ-calculus make use of fixpoint oper-
ators. We recall in this section elementary facts about these operators, defined
over lattices, starting from elementary concepts:

• A partial order is a pair (P, ≤), where P is a set and ≤ ⊆ P × P
an antisymmetric, reflexive and transitive relation. We often omit the
distinction between P and (P, ≤) when it is clear from context.

• The dual P op of (P, ≤) is the pair (P, ≥), where x ≥ y iff y ≤ x.

• The product
∏
i∈I (Pi, ≤i) of partial orders is

(∏
i∈I Pi,

∏
i∈I ≤i

)
,

where the product of relations is defined componentwise on tuples of
elements.

• In a partial order (P, ≤), the least element (resp. greatest) of a set
S ⊆ P is, when it exists, the element y ∈ S such that ∀x ∈ S y ≤ x
(resp. x ≤ y). The bottom element ⊥ of P is its least element; its top
element > is dually its greatest element.

• In a partial order (P, ≤), given a set S ⊆ P , its supremum
∨
S ∈ P is

defined, when it exists, as the element such that ∀s ∈ S s ≤
∨
S, and

such that ∀p ∈ P (∀s ∈ S s ≤ p) ⇒
∨
S ≤ p. In other words,

∨
S is

the least element of the set of elements of P greater than all elements of
S. It does not belong to S in general. The infimum

∧
S of S is defined

dually as the greatest minorant of S.

• In a partial order (P, ≤), a set S ⊆ P is directed if and only if, for every
(x, y) ∈ S, there exists z ∈ S such that x ≤ z and y ≤ z. When the
partial order represents the partial outputs of a computation, directed
sets typically represent different partial computations of a same output.
For instance, in a parallel program consisting of two processes π1 and
π2, the execution of the action a1 on π1 could be interpreted in a model
based on partial orders as a value x, while the execution of the action a2

on the processus π2 would lead, from the same initial configuration, to a
value y. The value z can be obtained by executing a2 on π2 in the first
case, or a1 on π1 in the second.

• A complete partial order, also called domain in the sequel1, is a partial
order in which every directed set has a supremum. Note that it contains

1The reader should be warned that there is no unified definition of the notion of domain.
Some authors may assume that they obey additional axioms.
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a least element, which is the supremum of the empty set. Following the
previous intuition, in a domain, a set of “locally unifiable” computations
must be “globally unifiable”.

• A complete lattice is a partial order with a bottom and a top element, and
such that every set has an infimum and a supremum2. We will typically
denote these lattices L, to distinguish them from partial orders. Note
that the powerset of a set is always a complete lattice.

• A function between partial orders ismonotone if it preserves the ordering.

• A fixpoint of an endofunction f : (L, ≤) → (L, ≤) is an element x ∈ L
such that f(x) = x.

The following theorem ensures the existence of fixpoints for monotone end-
ofunctions over complete lattices:

Theorem 2 (Tarski [Tar55]). Let L be a complete lattice and f : L → L be
a monotone function. Then f has fixpoints, and they form a complete lattice
Fix(f).

Being a complete lattice, Fix(f) has a top and a bottom element, which
we respectively denote, as later in modal µ-calculus, νX. f(X) and µX. f(X).
They respectively correspond to the greatest postfixpoint and to the least pre-
fixpoint of the endofunction f :

νX. f(X) =
∨
{X ∈ L | X ≤ f(X) }

µX. f(X) =
∧
{X ∈ L | f(X) ≤ X }

To understand these two particular fixpoints, it is enlightening to study how
they can be effectively computed.

Definition 7 (Initial and final sequences). Given an endofunction f : L→ L
on a complete lattice L, the initial (resp. final) sequence of f is an ordinal-
indexed sequence (fα)α of elements of L, such that

• f0 = ⊥ (resp. f0 = >),

• fα+1 = f(fα),

• For a limit ordinal λ, fλ =
∨
α<λ f

α (resp. fλ =
∧
α<λ f

α).

A limit of such a sequence is an element x ∈ L such that there exists an ordinal
ζ satisfying fα(x) = x for every α ≥ ζ. The least such element ζ is called the
closure ordinal of the sequence; its cardinality can not exceed the one of L.

Before explaining and illustrating this abstract definition with an example,
we relate it to the computation of least and greatest fixpoints:

Proposition 1. Let D be a domain and f : D → D be a monotone function.
Then the initial sequence of f exists, and µX. f(X) is its limit.

2This is in fact enough to imply the existence of ⊥, which is the supremum of the empty
set, and dually of its infimum >.



42 CHAPTER 2. LOGIC AND AUTOMATA

Proposition 2. Let L be a complete lattice and f : L → L be a monotone
function. Then the initial and final sequences of f exist, and µX. f(X) is the
limit of the initial sequence, while νX. f(X) is the one of the final sequence.

Example 3. The most canonical complete lattices are arguably given by pow-
ersets3. Let us consider the tree T1 of Example 1, and in particular its set of
nodes N . Denote by L = P(N) the complete lattice of sets of nodes of T1,
and define the endofunction

f1 : X 7→ {x ∈ N | x is labeled with if and x has a successor in X }

In a complete lattice obtained as a powerset of some set N , we always have
⊥ = ∅ and > = N . So, the initial sequence for f1 starts with f0

1 = ∅. The
first iteration already stabilizes the sequence: indeed, f1

1 = ∅ since no node
of the tree has a successor in ∅, and we therefore have

µX. f1(X) = ∅

On the other hand, the computation of the final sequence for f1 starts with
f0

1 = N . Then f1
1 is the set of all nodes labeled with if, since they all have

a successor in N . The sequence stabilizes at the next step: indeed, f2
1 = f1

1

since every element of f1
1 is labeled with if, and has a successor in f1

1 . We
therefore have:

νX. f1(X) = {n ∈ N | n is labeled with if }

In other terms, this fixpoint computation allows us to detect the infinite branch
labeled by if, just as the MSO formula ϕM1,coind of Example 2 did.

Notice the difference between the two interpretations of f1: in this setting
of trees with branches of at most countable length, we can understand the least
fixpoint µ as a finitary iteration of ϕ on the initial element, a process often
referred to as inductive, while ν can explore infinite branches: by duality with µ,
it starts from the set of all elements, which can be infinite, and its iterations do
not construct, but destruct this set by removing elements which are not stable
under the action of the function of interest. This behavior, dual to the inductive
one, is called coinductive, and is a central concept when infinite objects are
considered, see Chapter 4 for a quick introduction. The associated theory of
coinduction permits indeed a convenient form of reasoning on non-well-founded
branches – which, in our framework, will always be countable branches. Recall
that a relation is well-founded when there is no infinite decreasing chain. For
an order relation, this means that there is no infinite sequence

· · · < x2 < x1 < x0

or, alternatively, that every such sequence has a minimal element. In the setting
of trees, the order relation x < y typically means that x is an iterated successor
of y (or equivalently, that x 6= y and x is in the subtree rooted at y), so that

3Birkhoff’s representation theorem states indeed that finite distributive lattices are equiv-
alent to sublattices of a powerset lattice, see for instance [DP90]. Stone duality theory is
devoted to the study of more general – and typically infinite – situations, where it is not
enough to consider a powerset construction.
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well-foundedness amount to having only finite branches. Over well-founded
relations, one can use an induction principle:

∀x ∈ X [(∀y ∈ X (y < x⇒ P (y)))⇒ P (x)]⇒ ∀x ∈ X P (x)

which is a form of strong induction on finite branches. We will use this principle
in §8.8.

2.4 Modal µ-calculus

The function f1 of Example 3 corresponds to a logical formula over T1, whose
informal meaning is:

“the current node is labeled with if,
and it has a successor with the same property”

The two different interpretations we computed correspond to an inductive, or a
coinductive interpretation of the property. Modal µ-calculus provides a logical
language to express such specifications, using:

• unary predicates such as if, stating that the current node is labeled with
if,

• the usual Boolean operations on formulas,

• modalities 3 and �, to express the fact that a formula holds on at least
one (3) — or all (�) — successors of the node of interest,

• and variables, together with two fixpoint operators µ and ν, the former
being inductive and the latter coinductive, in the spirit of §2.3.

For instance, f1 gives the semantics of the modal µ-calculus formula

if ∧ 3X

over the tree T1, which has one free variable X to which we may apply a
fixpoint. Its inductive interpretation µX.f1(X) corresponds to

ϕ1,ind = µX. ( if ∧3X )

whose semantics is empty – and which is therefore false on every node, while
its coinductive interpretation νX.f1(X)

ϕ1,coind = νX. ( if ∧3X )

holds on every node of the rightmost branch of T1, as computed in Example 3.

Formulas and their semantics. Formally, given a ranked alphabet Σ,
modal µ-calculus formulas are defined by the grammar

ϕ ::= X | a | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | 3i ϕ | 3ϕ | µX.ϕ | νX.ϕ

for a ∈ Σ. As for MSO, we introduce some redundancy in the grammar: 3ϕ,
which expresses the existence of some successor - in any direction - of the
current node satisfying the property ϕ, can be expressed as

∨
i 3i.
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This presentation of modal µ-calculus does not introduce a negation oper-
ator. In fact, negation is admissible on the fragment of guarded formulas – to
be defined in the next paragraph – and a form of de Morgan duality can be
given, sending a modality or a fixpoint to its dual:

• ¬ a =
∨
b∈Σ,b 6=a b

• ¬ (ϕ ∨ ψ ) = ¬ϕ ∧ ¬ψ

• ¬3ϕ = �¬ϕ

• ¬3i ϕ = 3i ¬ϕ

• ¬µX.ϕ(X) = νX.¬ϕ(¬X)

The latter case introduces negated variables in the scope of a fixpoint. The
guarded fragment of modal µ-calculus restricts to formulas giving monotone
operators on the complete lattices they are interpreted into; in such guarded
a formula, every variable is under the scope of an even amount of negations.
Note that the negation-free grammar we defined forces formulas to be guarded,
so that their semantics will be monotone functions, and admit fixpoints thanks
to Theorem 2.

Given a Σ-labeled ranked tree T , whose nodes form the set N , the semantics
of a formula is the set of nodes where it holds. It is defined using a valuation
V : V ar → P(S) for free variables:

• ||a||V = {n ∈ N | n is labeled with a}

• ||X||V = V(X)

• ||¬ϕ||V = N \ ||ϕ||V

• ||ϕ ∨ ψ||V = ||ϕ||V ∪ ||ψ||V

• ||3i ϕ||V = {n ∈ N | ar(n) ≥ i and succi(n) ∈ ||ϕ||V}

• ||µX.ϕ(X)||V =
⋂
{M ⊆ N | ||ϕ(X)||V[X←M ] ⊆M}

The semantics of dual connectors is defined using de Morgan duality. The least
fixpoint operator µ is expressed as a least prefixpoint, as defined in §2.3, of the
endofunction f on the complete lattice L = P(N) obtained from ||ϕ|| by fix-
ing the valuation V on all variables but X, which is its parameter. Dually,
the semantics of the greatest fixpoint ν is the coinductive interpretation of this
function f .

In our setting, where modal µ-calculus formulas are defined over trees with
branches of at most countable length, the intuitive meaning of inductive and
of coinductive interpretation given in §2.3 can be helpful to understand the
meaning of a formula. We can therefore understand the operator µ as a finite
iteration of the formula using a fixpoint rule

µX.ϕ[X] →µ ϕ[µX.ϕ[X]] (2.1)

while the coinductive operator ν allows such an unfolding

νX.ϕ[X] →ν ϕ[νX.ϕ[X]] (2.2)
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finitely or infinitely. The inductive operator µ is thus useful to state safety
properties, and the coinductive operator ν to express liveness properties. Of
course, several fixpoints may be nested in a formula:

νX. (�X ∧ µY. ( archive ∨3Y ) ) (2.3)

would express for instance that, from every node of a tree of actions model-
ing some program – that is, from any instant of its (approximated) execution
– there is some execution which runs the instruction archive after a finite time.

This alternance of inductive and coinductive fixpoints is an appropriate
measure of the complexity of a modal µ-calculus formula, see [BW15, Section
3.4] for more details.

Definition 8 (Alternation depth). The alternation depth of a modal µ-calculus
formula ϕ is the maximal number of alternations between nested inductive and
coinductive fixpoint operators.

For instance, the formula (2.3) has alternation depth 1. When we consider
a more general definition of the modal µ-calculus over labeled transition sys-
tems [BW15], an interesting restriction of Theorem 1 states that the bisimilar
fragment of weak MSO is equivalent to the formulas of modal µ-calculus of
alternation depth 0 [Niw88]. The inability of modal µ-calculus to distinguish
between bisimilar structures leads to the tree model property : if a formula is
satisfiable – that is, if there exists a transition system over which it holds –
then it is also satisfied by a tree.

Example 4. Recall the tree T1 of Example 1:

T1 =

if

if

if

...data

data

Nil

data

Nil

Nil

The modal µ-calculus formula

ϕ1,t = νX. ( if ∧31 ( µY. ( Nil ∨�Y ) ) ∧32 X )

holds on every node of the rightmost branch of T1. It is indeed true on nodes
labeled with if, from which the symbol Nil can be reached on all branches
starting in the first direction after finitely many steps, and whose successor in
the second direction has the same property – this second part being interpreted
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coinductively. An inductive interpretation would have resulted in a formula
valid nowhere on the tree, as an infinite set of nodes needs to be considered.

The formula

ϕ1,alt = νX. ( if ∧ µY. ( 3Y ∨ data ) ∧3X )

shares a same spirit. It holds on all nodes of the rightmost branch, for the same
reasons as before, except for the root. It is true on the root only because the
use of the modality 3 instead of 31 allows to look for data by exploring the
second direction first, and then to explore the left branch labeled by data ·Nil.
As we will see in §2.5, this necessity to explore twice the rightmost subtree of
the root will lead an equivalent alternating automaton to duplicate it, to check
in two separate executions that ϕ1,alt and µY. ( 3Y ∨ data ) hold on the right
successor of the root.

We now consider the ranked alphabet

Σ2 = { if : 2, commit : 1, error : 1, end : 0, Nil : 0 }

and the Σ2-labeled ranked tree

T2 =

if

if

...if

...commit

error

end

commit

Nil

whose finite representation will be given in §3.2. A typical formula over this
tree of actions would allow to detect that an execution leads to an error:

ϕ2,t = µX. ( 3X ∨ error )

This formula is true at the root of any Σ2-labeled ranked tree containing an
occurrence of the symbol error.

Before we translate modal µ-calculus to an equivalent automata model, we
find useful to make a few extra remarks. First of all, it is possible to express
the semantics of modal µ-calculus formulas as a proof system, in which > ` ϕ
if and only if ϕ is valid, see [BW15, Section 3.5] and [Wal95].

Note also that a form of renaming is allowed on variables of the µ-calculus,
just as in the λ-calculus recalled in §3.1. An extra possibility exists however
for modal µ-calculus, and is given by Niwinski’s “golden rule” [AN01]:

µX. µY. ϕ(X,Y ) = µZ.ϕ(X, Y ← Z)

To conclude this section, let us mention that common dynamic or tem-
poral logics such as PDL, CTL and CTL* can be embedded in the modal
µ-calculus [BW15, Section 4.2].



2.5. ALTERNATING PARITY TREE AUTOMATA 47

2.5 Alternating parity tree automata

The semantics of the modal µ-calculus can be informally understood as a finite
or infinite process of unfolding of a formula, using the rules (2.1) and (2.2)
inductively or coinductively, in order to verify that this formula holds. This
suggests the definition of an associated tree automata model whose execution
over a given tree would check whether it satisfies a formula ϕ of interest. Such
an automaton will propagate subformulas of ϕ along the tree, using its internal
state to memorize the subformula it is currently checking. Such an automaton
requires:

• a synchronization of the reading of a symbol a ∈ Σ with the propagation
of subformulas of ϕ along branches, which aims at constructing a proof
of ϕ over the tree,

• non-deterministic choices, to deal with disjunctive subformulas,

• alternation, to deal with conjunctive subformulas: the automaton will
duplicate the subtree over which it has to check ψ1 ∧ψ2, and check ψi on
the ith copy,

• and parity conditions, which allow to discriminate inductive from coinduc-
tive behaviors a posteriori, in order to check that the inductive, “finite”
unfolding operator µ was not iterated countably.

This leads to the definition of alternating tree automata (ATA), and of
alternating parity tree automata (APT). In order to define their transition
functions, we need to introduce positive Boolean formulas:

Definition 9 (Positive Boolean formula). The set B+(X) of positive Boolean
formulas θ over a set X is defined by the grammar

θ ::= > | ⊥ | x | θ ∧ θ | θ ∨ θ

where x ∈ X. We consider these formulas up to the usual equalities, and
notably ϕ ∨ ϕ = ϕ and ϕ ∧ ϕ = ϕ.

We say that a set S ⊆ X satisfies θ ∈ B+(X) when replacing each element
of S occurring in θ by >, and every element of X \ S by ⊥, gives a formula
equivalent to >.

Definition 10 (Alternating tree automaton). An alternating tree automaton
A = 〈Σ, Q, δ, q0 〉, also referred to as ATA, is given by

• a ranked alphabet Σ,

• a finite set of control states Q,

• a transition function δ : Q× Σ→ B+(N×Q) such that

∀(q, a) ∈ Q× Σ δ(q, a) ∈ B+({1, . . . , ar(a)} ×Q)

• and an initial state q0 ∈ Q.
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A typical transition of an ATA over the ranked alphabet Σ1 introduced in
Example 1 is

δ(q0, if) = (1, q0) ∧ (1, q1) ∧ (2, q0)

Its effect is to duplicate the subtree in direction 1, and to execute on one copy
with state q0, and with q1 on the other. It executes only on a copy of the
second subtree, without changing the state. Over the tree T1, this duplication
procedure produces an infinite unranked tree R1, called a run-tree of A over
T1:

R1 =

ifq0

ifq0

ifq0

...dataq1

data···

Nil···

dataq0

data···

Nil···

dataq1

Nil···

dataq0

Nil···

Nilq1Nilq0

(2.4)

Note that transitions may also drop subtrees, as for instance

δ(q0, if) = (1, q0) ∧ (1, q1)

whose execution over the infinite tree T1 results in a finite run-tree

ifq0

Nilq1Nilq0

More generally, a transition function may stop the execution of the automaton
by dropping all subtrees of a node, and trivially accept:

δ(q0, if) = >

or reject:
δ(q0, if) = ⊥

Since boolean formulas can be put in disjunctive normal form, a typical
transition of an ATA is

δ(q, a) =
∨
i∈I

∧
j∈Ji

(di,j , qi,j) =
∨
i∈I

ϕi (2.5)

For every i ∈ I, we say that ϕi is a conjunctive clause of the transition δ(q, a).
A transition can thus be understood as the non-deterministic choice of a con-
junctive clause ϕi, followed by a universal choice (alternation): for every j ∈ Ji,
a copy of the subtree in direction di,j is produced, over which the automaton
runs with state qi,j .

When, for every i ∈ I and every direction d, there is a unique j such that
di,j = d, we recover the usual notion of non-deterministic tree automaton.

We can now define run-trees formally:
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Definition 11 (Run-tree). Given a Σ-labeled tree t and an alternating tree
automaton A = 〈Σ, Q, δ, q0 〉, a run-tree, or execution tree of A over t is a
(N×Q)-labeled unranked tree r such that:

• ε ∈ dom(r) and r(ε) = (ε, q0)

• For every β ∈ dom(r), denoting r(β) = (α, q), there exists S ⊂ N × Q
satisfying δ(q, t(α)) and such that

∀(i, q′) ∈ S, ∃j ∈ N, (βj ∈ dom(r)) ∧ (r(βj) = (αi, q′))

Note that the data of the tree t over which the ATA is executed allows to
compute the label of each node of a run-tree, so that we will use in the sequel
representations of run-trees as in (2.4), with an explicit labeling of nodes.

From modal µ-calculus to tree automata theory. Consider again the
modal µ-calculus formula

ϕ1,t = νX. ( if ∧31 ( µY. ( Nil ∨�Y ) ) ∧32 X )

To check this formula by unfolding, one has to

• check that the current node is labeled by if,

• check that its successor in direction 1 satisfies µY. ( Nil ∨�Y ),

• check that its successor in direction 2 satisfies ϕ1,t.

We can design an automaton which will unfold these two formulas along
the branches of the tree. We set Q = {q0, q1}. The state q0 corresponds to
checking that ϕ1,t holds on the current node, while q1 corresponds to check for
µY. ( Nil ∨�Y ). The transition function can then be defined as:

• δ(q0, Nil) = ⊥

• δ(q0, data) = ⊥

• δ(q0, if) = (1, q1) ∧ (2, q0)

• δ(q1, Nil) = >

• δ(q1, data) = (1, q1)

• δ(q1, if) = (1, q1) ∧ (2, q1)

The first two cases correspond to checking ϕ1,t on the current node, which
implies that it is labeled with if: if another symbol is found, the automaton
stops its execution, and rejects. The third case corresponds to a labeling of the
current node with if while checking ϕ1,t: this formula needs to be checked on
the successor in direction 2, while µY. ( Nil ∨�Y ) has to be checked in the
other direction.

When the current state is q1, the automaton checks that µY. ( Nil ∨�Y )
holds. If the node is labeled with Nil, it accepts. If it reads data or if, it
keeps looking for Nil in all available directions. Note that this automaton is
non-deterministic, but the similar formula ϕ1,alt of Example 4 would require
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alternation: indeed, ϕ1,alt and µY. ( Nil ∨�Y ) could both hold in the same
direction.

However, the automaton we designed to check ϕ1,t is incomplete. Suppose
that there is an infinite branch whose nodes are all labeled by data; the au-
tomaton will have an execution tree, since it can always go further in state q1

along this branch. But this breaks the inductive nature of the formula q1 is
supposed to check. The solution is to add a color to each state, that is, an
integer which will keep track of an additional information indicating whether
the automaton currently unfolds an inductive, or a coinductive fixpoint. We
associate the color 0 to q0, and 1 to q1. Now, if the automaton reads the in-
finite branch whose nodes are all labeled by data, the maximal color it sees
infinitely often is 1 – we call it the color of the branch. By rejecting infinite
executions in which an infinite branch has color 1, we exclude “unsound” run-
trees, and capture automata-theoretically the inductive-coinductive nature of
modal µ-calculus.

In general, this construction leads to the definition of alternating parity
automata (APT):

Definition 12 (Alternating parity tree automaton). An alternating parity
tree automaton A = 〈Σ, Q, δ, q0, Ω 〉, also referred to as APT, is given by
an ATA 〈Σ, Q, δ, q0 〉, together with a coloring function Ω : Q→ N, mapping
each state to its color.

We can then generalize the idea we previously sketched:

Definition 13 (Accepting run-tree). Consider an infinite branch b = i0 · · · in · · ·
of a run-tree r of an APT A = 〈Σ, Q, δ, q0, Ω 〉 over t. Denoting π2 the pro-
jection giving the state labeling a run-tree, we set mn = Ω(π2(r(i0 · · · in))),
and call color of the branch b the greatest color occurring infinitely often in the
sequence (mn)n∈N. We say that the branch b is winning, or accepting, if its
color is even. A run-tree is winning, or accepting, when all its infinite branches
are.

Given an APT A = 〈Σ, Q, δ, q0, Ω 〉, we sometimes find convenient in the
sequel to say that A accepts some Σ-labeled ranked tree t from state q when
the APT 〈Σ, Q, δ, q, Ω 〉 obtained from A by modifying its initial state has an
accepting execution tree over t.

The following theorem relates modal µ-calculus (and thus MSO, due to
Theorem 1), to alternating parity tree automata:

Theorem 3 ( [JW95]). Consider a ranked alphabet Σ.

• Given a modal µ-calculus (resp. MSO) formula ϕ, there exists an alter-
nating parity automaton Aϕ such that, for every Σ-labeled ranked tree t,
ϕ holds at the root of t if and only if Aϕ has an accepting execution tree
over t.

• Given an alternating parity automaton A, there is a modal µ-calculus
(resp. MSO) formula ϕA such that, for every Σ-labeled ranked tree t, A
has an accepting execution tree over t if and only if ϕA holds at the root
of t.
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More details on the underlying constructions can be found for instance
in [Wil01]. To conclude this section, let us recall that since the tree automata
we consider are “top-down”, that is, since their execution starts on the root of
the tree they run on, they cannot be determinized, see for instance [CDG+07,
Proposition 1.6.2]. However, one can non-determinize alternating (parity) tree
automata:

Theorem 4 (Non-determinization of APT [MS95]). Given an alternating (par-
ity) tree automaton A, one can compute a non-deterministic (parity) tree au-
tomaton AND recognizing the same language.

We will nevertheless focus on alternating tree automata: as explained in
the Introduction and in Chapter 5, the alternating behavior of ATA is strongly
similar to the one of the exponential modality of linear logic.

2.6 Parity games

As we explained in the previous section, a transition (2.5) of an alternating tree
automaton A running over a tree t can be understood as a non-deterministic
choice, followed by a universal choice. This view leads to an interactive, game-
theoretic understanding of ATA, in which a player tries to construct locally a
run-tree r by playing non-determinism, while the other one, selecting one of
the copies created by alternation, guides this construction of r along a given
branch. The goal of the latter player is to find a branch along which no run-tree
could be built, leading to the impossibility of the “global” existence of r.

In this section, we formalize this game-theoretic intuition, and incorporate
the parity condition of APT, leading to the notion of parity game, which is
essentially a bipartite graph with a coloring of nodes.

Definition 14 (Parity game). A parity game PG = 〈(VE ] VA, E), v0, Ω〉 is
given by:

• a directed graph G = (V = VE ] VA, E),

• an initial vertex v0 ∈ V ,

• and a coloring function Ω : V → N.

The partition of the graph divides it in nodes controlled by the player Adam,
which belong to the set VA, and nodes controlled by Eve, forming the set VE .
The interaction between players is given by the notion of play :

Definition 15 (Play). A play of a parity game PG = 〈(VE ] VA, E), v0, Ω〉
is a sequence π = v0 · v1 · · · such that, for every index i, (vi, vi+1) ∈ E, and
which starts on the initial node v0.

A play is maximal if it is finite and ends on a vertice without outgoing
edge, or if it is infinite. Infinite plays receive a color, which is the greatest color
occurring infinitely often in (Ω(vi))i∈N, similarly to the branches of run-trees
of APT.

Following the interactive intuition of APT, we can define a winning condi-
tion over plays:
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Definition 16 (Winner of a play). A maximal play π = v0 · · · v1 · · · is winning
for Eve if it is finite and ends with a node controlled by Adam, or if it is infinite
and of even color. Otherwise π is winning for Adam.

Since Adam’s rôle is to explore branches, Eve can build a run-tree precisely
when she can build one on any branch – that is, when she can win any play
where she constructs this run-tree. This construction is modeled by a strategy
for Eve, that is, by a function indicating her answer to any of Adam’s moves;
this strategy is winning for Eve when she wins every play following it.

Definition 17 (Strategy). • A strategy for Eve is a partial map σ from
the set of plays ending in VE to V , and such that for every play π ending
in VE the play π · σ(π) is a play of PG. When σ is a total map, we say
that σ is a total strategy.

• A strategy for Eve is memoryless, or history-free, when it can be repre-
sented as a function σ : VE → V , that is, when Eve moves according
only to the current node of the graph, independently of the history of the
play.

• We say that Eve follows σ in the play π if, for every prefix π′ of π ending
in VE , the play π′ · σ(π′) is a prefix of π.

• If every maximal play in which Eve follows σ is winning for her, we
say that σ is a winning strategy. We define dual notions of (winning
(memoryless)) strategy for Adam.

• Given strategies σE for Eve and σA for Adam, we define their interaction
〈σE |σA〉 as the maximal play starting from v0 where each player follows
his strategy.

The existence of a winning run-tree of an APT A over a tree t therefore
reduces to the existence of a winning strategy for Eve in a parity game. Such
games are determined [Mar75], that is, one of the players always have a winning
strategy. We can moreover decide which player has a winning strategy from a
given node, and algorithms allow to construct memoryless such strategies, see
for instance Zielonka [Zie98] or Schewe [Sch07].

Theorem 5. Given a finite parity game, one can effectively compute the win-
ning player, and a memoryless winning strategy for him.

The problem is known to be in NP ∩ coNP. For a finite or regular tree t,
we can design a parity game modeling the interactive behavior of an APT Aϕ
over it, and deduce from this theorem that checking ϕ over t is decidable.

However, how could we adapt this approach to deal with non-regular trees
as T1? The purpose of this thesis is

• to extend the notion of regularity to higher-order regularity, introduced
in the next chapter,

• and to use semantic tools to design an appropriate finite parity game
corresponding to the model-checking of the higher-order regular tree.
Part II uses type-theoretic methods in this goal, which we connect to
denotational models of linear logic in Part III.
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Before we introduce higher-order regularity in the next chapter, let us recall
the existence of another duality, whose conceptual interest will arise with this
extended notion of regularity: a run of a tree automaton can be understood as
a collaborative interaction between two players:

• the tree, which is explored during the interaction, and exchanges infor-
mations about its labeling,

• and the automaton, which modifies the current state of the flow of inter-
action, and potentially performs duplications of the tree.

This point of view, deeply related to game semantics, will particularly appear
in the theorems of §9.2, as well as in their extension as Conjecture 1; and will
strongly underly our model-theoretic approaches.





Chapter 3

An abstract model for recursive
functional programs

In model-checking, programs are traditionally abstracted into more elementary
models which, being less expressive, allow to decide properties, formulated
for instance in monadic second-order logic. To handle functional programs,
coded for instance in C++, Haskell, OCaML, Javascript, Python, or Scala,
we need models which can take into account higher-order, recursive function
calls. In this chapter, we introduce higher-order recursion schemes, which are
a convenient such model.

We start by recalling in §3.1 essential notions about the λ-calculus and its
simply-typed fragment. Extending it with a form of recursion leads to higher-
order recursion schemes (HORS) in §3.2 or, equivalently, to the λY -calculus,
see §3.3. HORS and λY -terms allow to generate trees as T1, modeling the
set of actions of a functional program of interest; we formulate in §3.4 the
model-checking problems we will focus on in this thesis. In §3.5, we explain
how the abstraction of Turing-complete functional programs into the less ex-
pressive formalism that are higher-order recursion schemes allows notably to
decide whether they are productive – a notion which may be understood as an
infinitary version of the halting problem.

3.1 Simply-typed λ-calculus

Introduced by Church in 1932 [Chu32], the λ-calculus originally intended at
replacing set theory with a new foundation for mathematics, based on a calculus
of functions and applications. While the resulting system ended up (at least
at the time) not being powerful enough to offer an alternative foundation for
mathematics, it appeared that it has the same expressive power as a Turing
machine, and that it thus provides a simple and convenient universal model of
programming languages. In this section, we briefly recall the main ingredients
of the λ-calculus, and emphasize on the simply-typed fragment, on which we
will focus in the sequel of this thesis – extended with recursion.

λ-terms. Given a signature Σ providing a set of constants, and a set of
variables V, λ-terms are defined by the grammar

t, u ::= x | a | λx. t | t u

55
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(λx. t ) u →β t[x← u]
t →β u

λx. t →β λx. u

t →β t′

t u →β t′ u

u →β u′

t u →β t u′

Figure 3.1: β-reduction of infinite λ-terms.

where x ∈ V is a variable and a ∈ Σ a constant. A term t u is called the
application of the term t to the term u, and should be thought of as a function
application. The construction λx. t binds the variable x in the term t, and is
to be thought of as a syntactic representation of the function

λx. t : x 7→ t[x]

A term may have free variables, that is, variables x, y, . . . which are not bound
by a λ. For instance, the term

λx. λy. a x y

where a ∈ Σ is closed : all its variables are bound, while the term

λx. λy. a x z

is open: it has one free (i.e. not bound) variable, namely z. When a variable
is bound, one can uniformly rename every of its occurrences; some attention
has nevertheless to be payed, as two different variables may appear with the
same name in a term – we will not discuss this problem, and assume that
it never occurs in the sequel, as α-conversion ensures that there always is a
representation of the term where each name corresponds to a unique variable,
see [Bar84] for details.

The λ-calculus induces a rewriting system, based on the notion of redex. A
redex is a term

(λx. t ) u

consisting of the application of a term representing the function x 7→ t[x] to
the argument u. Just as in mathematics, where

(x 7→ f(x) )(5)

would rewrite to f(5), the β-reduction of this redex is defined as

(λx. t ) u →β t[x← u]

where t[x← u] is obtained from t by replacing each occurrence1 of the variable
x with the term u. This relation may reduce any redex occurring as a subterm
of the term of interest, see Figure 3.1 for its formal definition.

1Without the assumption we make in this thesis that the term has been α-converted to a
term in which every variable name is the one of a unique variable, more subtlety is required,
see [Bar84].
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A term is in normal form when it does not contain any redex. For instance,

(λx. λy. a x y) b c →β (λy. a b y) c →β a b c

and a b c is the normal form of the term (λx. λy. a x y) b c. A key fact is
that the computation may duplicate or drop its inputs, just as an alternating
automaton would, a behavior we will analyze precisely in the sequel of this
thesis using linear logic. Denoting→3

β the application of the rewriting rule→β

three times, the term

(λx. λy. λz. a (a x x) (a y x)) b c d →3
β a (a b b) (a c b))

makes three copies of its first argument b, one of its second argument c, and
drops its third argument d. More generally, we denote →∗β the finitely iterated
application of the rule →β — note that this includes the identity relation, as
→β could be iterated zero times.

Before we discuss the concurrent behavior of the reduction rule →β , let us
quickly introduce the relation →η of η-reduction:

λx .t x →η t where x is not free in t

The reverse relation is called η-expansion. These relations are independent of
β-reduction: in general, we do not have λx. t x →β t. We will use these
relations mainly in Chapter 10.

Reductions and strategies. Terms may contain many redexes, either in
parallel:

a ( (λx1. t1 ) u1) ( (λx2. t2 ) u2)

or in a nested way:
(λx. (λy. x y ) x ) a

In both cases, the two possible reductions lead to the same result, as depicted
in Figures 3.2 and 3.3. It is not always the case: let us consider

Ω = (λx. x x ) (λx. x x )

which reduces to itself: Ω →β Ω →β · · · . Now if we apply it to a term which
does not use its argument, obtaining

tw = (λx. a ) (λx. x x ) (λx. x x )

we may either

• reduce the head redex first, that is, the leftmost one:

(λx. a ) (λx. x x ) (λx. x x ) →β a

• or reduce the other one, and obtain the same term tw again.

The behavior of these terms tw and Ω illustrate several key notions of rewriting
theory:
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a ( (λx1. t1 ) u1) ( (λx2. t2 ) u2)

tt ))
a t1[x1 ← u1] ( (λx2. t2 ) u2)

**

a ( (λx1. t1 ) u1) t2[x2 ← u2]

uu
a t1[x1 ← u1] t2[x2 ← u2]

Figure 3.2: Confluence of two parallel reductions.

(λx. (λy. x y ) x ) a

yy %%
(λy. a y ) a

&&

(λx. x x ) a

xx
a a

Figure 3.3: Confluence of two nested reductions.

• confluence: from any two reductions tw →∗β t1 and tw →∗β t2, there is a
term t3 such that

tw
∗

  

∗

~~
t1

∗
  

t2

∗
~~

t3

In this easy case, t3 can always be taken to be a, but in some cases it can
be tw as well. In general, the whole λ-calculus is confluent, see [Bar84]:
replacing tw with any term t, the same property holds.

• Weak normalization: a term is weakly normalizing when there exists a
finite reduction sequence computing its normal form – which, when it
exists, is unique by confluence. The term tw is weakly normalizing, its
normal form being a, while Ω is not, and consequently does not have a
normal form.

• Strong normalization: a term is strongly normalizing when every maximal
reduction sequence is finite and computes its normal form. Neither tw
nor Ω have this property. However, the simply-typed λ-terms we will soon
introduce are all strongly normalizing.

Since not all reduction sequences give the same result, it makes sense to
study reduction strategies, which indicate in which sequential order redexes
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should be evaluated. Call innermost a redex which does not contain any other
redex, and outermost a redex which is not contained in any other. Among all
the possibilities2, we distinguish two main classes of reduction strategies:

• outermost strategies, which evaluate first the outermost redexes, and
correspond to call-by-name evaluation: when a functional application is
encountered, the core of the function is evaluated, and its arguments are
accessed and reduced every time they appear in a computation. It is
a very costly evaluation, since it recomputes its argument every time it
accesses it, but it computes the normal form of tw,

• and innermost strategies, which evaluate first the innermost redexes, and
can be understood as call-by-value evaluations: on a functional evalua-
tion, they compute first the value of the argument, which is somehow
memorized by the program, so as to avoid multiple evaluations later on
when the body of the function is evaluated. However, the application
of an innermost strategy to tw leads to an infinite, unproductive com-
putation: the argument Ω, although useless for the evaluation of tw, is
computed and leads to a divergent computation.

Notice that the main difference between outermost (resp. innermost) strate-
gies consists in the order in which they compute redexes of the same priority
– that is, in how they sequentialize a canonical, parallel reduction. In gen-
eral, when a term has a normal form, it can be computed using the standard
reduction, also called head reduction →h, and defined using the deduction rules

(λx. s ) t →w s[x← t]
s →w s′

s t →w s′ t

s →w s′

s →h s′
s →h s′

λx. s →h λx. s′

where→w defines weak head reduction, which can not reduce under λ, and→h

denotes head reduction.

Theorem 6 (Standardization of the λ-calculus [CCF58]). If t is weakly nor-
malizing, then its normal form is computed (in finite time) by the head reduction
strategy.

More generally, a denotational semantics of the λ-calculus can be defined
using Böhm trees, which come from Böhm’s work on separability [Böh68], and
were defined by Barendregt, see [Bar84, Chapter 10]:

Definition 18 (Böhm tree). Given a λ-term t defined over the set V of vari-
ables, and the set Σ of constants, define its Böhm tree as the labeled, unranked
tree BT (t) defined inductively as

• BT (t) = Ω if t has no head normal form,

• if x ∈ V, BT (x) = x is the tree consisting of the single node x,

2In practice, more involved strategies can be used, as call-by-need [Wad71], call-by-push-
value [Lev06], probabilistic strategies. . .
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• if a ∈ Σ, BT (a) = a is the tree consisting of the single node a,

• BT (λx. t) = λx.BT (t),

• BT (t0 t1) = BT (t0) BT (t1).

The Böhm tree of a weakly normalizing term is its normal form itself,
due to Theorem 6. More interesting phenomena arise for terms which do not
normalize. While we trivially have that the Böhm tree of the λ-term Ω is the
divergence symbol Ω, more interesting things arise if we consider a term as
Church’s fixpoint combinator

YChurch = λf. (λx. f (x x ) ) (λx. f (x x ) )

applied to a symbol a ∈ Σ: we get

BT (YChurch a) = BT ((λx. a (x x ) ) (λx. a (x x ) ))
= BT (a ( (λx. a (x x ) ) (λx. a (x x ) ) ))
= BT (a a ( (λx. a (x x ) ) (λx. a (x x ) ) ))
= · · ·

so that

BT (YChurch a) =

a

a

a

a
...

For any term t, the term YChurch t and the term t (YChurch t ) have the same
normal form, if any; however, to get a recursive behavior, we need a combinator
Y such that Y t →∗β t (Y t ). Such a combinator exists: one can for instance
take the Turing combinator [Tur37]

YTuring = (λf. λg. g ( f f g ) ) (λf. λg. g ( f f g ) )

The substitutions of YTuring simulating the unfolding of a fixpoint may create
additional redexes; as an exercise, the brave reader may for instance consider
checking that the λ-term over the set of constants Σ1 of Example 1

(YTuring (λF. λx. if x (F ( data x ) ) ) ) Nil (3.1)

has T1 for Böhm tree – or, in other words, that an infinitary head reduction
computes it.

The combinator YTuring allows to incorporate recursion in the λ-calculus3;
however, there is no guarantee that this recursion will actually produce a nor-
mal form, as it may be applied to a diverging term. The notion of typing,
and its extension to a recursive framework in §3.2, will provide a more conve-
nient setting for the generation by Böhm evaluation of trees as T1. The use

3There are quite many choices of fixpoint combinators in the untyped λ-calculus – in
fact, they form a recursively enumerable set [Gol05].
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of recursion schemes, or the introduction of fixpoint combinators directly in
the calculus, will tremendously ease the computation of the normal form of a
recursive term as (3.1).

Remark 1 (Relating reduction strategies.). While outermost policies are in
general strictly more productive than innermost ones, some syntactic transfor-
mations allow to simulate the behavior of a strategy of a class into the other.
The simulation of call-by-name (CBN) strategies using a call-by-value (CBV)
mechanism is not very hard, and relies on the notion of thunks, which are func-
tions delaying the computation of arguments until they actually are accessed
in the CBV evaluation.

The converse direction is harder, and relies on the continuation-passing style
(CPS) mechanism, a notion which happens to be deeply related to the double
negation translation by Gödel of classical logic into intuitionistic logic, and with
the dialogical interpretation of proofs as interactive strategies. In a program
in continuation-passing style, every function receives among its arguments a
number of continuations, from which it picks which function should be called
next in the execution flow of the program. The translation of “usual” programs
to their CPS counterpart can be performed automatically, and is often used
as an intermediate representation of programs in the compilers of functional
languages.

Regarding the simulation of innermost policies using outermost ones: given
a λ-term t normalizing in a call-by-value policy to a form 〈 t 〉, one can define
another term t′ whose call-by-name evaluation computes 〈 t 〉, using a CPS
transform.

The relation between call-by-name and call-by-value strategies by means of
continuations appears in Plotkin’s work [Plo75]. For an history of the early
discovery of continuations, see [Rey93].

The simply-typed fragment. The λ-term Ω is quite strange: it notably
contains

(λx. x x )

which takes as input a term which will be at the same time used as a function,
and as an argument of this function. This astonishing behavior allows Ω to
loop forever, by always applying this term to itself. It is thus tempting to
restrict the λ-calculus to terms which conform to some type – and as Milner
summarized [Mil78],

well-typed programs can’t go wrong.

In this section, “going wrong” will refer to the divergence of terms, that is, to
the inability of the standard reduction to compute a normal form in finite time.
We define simple types, using the grammar4

κ ::= o | κ→ κ

where o is the base type, also called ground type. In this thesis, o is the type of
terms representing trees, that is, the type of terms whose normal form consist

4We use the letter κ for simple types, following Kobayashi and Ong [KO09] who called
them kinds to distinguish them from refined types, in which an intersection operator appears,
see Chapter 5.
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only in constants which are fully-applied, in the sense that a constant of arity
i will have i arguments. Relating the type of a term with the one of its normal
form follows from a property of stability of typing under reduction called subject
reduction, see Proposition 3. The set of simple types is denoted K. Under this
interpretation of the base type o as the type of trees, a typical term of type
o→ o would be

λx

if

if

if

...data

data

x

data

x

x

(3.2)

which can be understood as the function mapping a tree t to the tree

if

if

if

...data

data

t

data

t

t

By convention, the arrow associates to the right, so that every simple type may
be decomposed as

κ = κ1 → · · · → κn → o

where n is called the arity ar(a) of the simple type κ. Considering this decom-
position, the order order(κ) of the simple type κ is defined as{

0 if n = 0

1 + max(order(κ1), . . . , order(κn)) else.

For instance, the type

κ2 = (o→ o)→ o→ o

is of arity 2, and of order

order(κ2) = 1 + max(order(o→ o), order(o))
= 1 + max(1 + order(o), 0)
= 1 + 1 + 0
= 2
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A typical term of type κ2, denoted as a tree, would be

λϕ

λx

if

ϕ

x

x

(3.3)

which, applied to the tree function (3.2) and to the tree

data

Nil

evaluates to the term of type o (that is, to the tree)

if

if

if

if

...data

data

data

Nil

data

data

Nil

data

Nil

data

Nil

Following this idea that types describe properties of the arguments of terms –
as being a tree, a function mapping a tree to a tree. . . , and of how they evolve
during computations, a whole inference system can be designed to assign a
simple type to terms, see Figure 3.4. In this figure, as well as in the sequel of
this document, we take the convention that on → o describes the simple type

o→ · · · → o︸ ︷︷ ︸
n times

→ o

Not all terms have a simple type: Ω, for instance, does not admit one, as it
would require some type σ describing the fact that x is used at the same time
as a value of type σ and as a function of type σ → σ. More general type sys-
tems would allow such things, as intersection type systems, which give several
types to a same term, see Chapter 5 where we introduce refined type systems5,

5In fact, the type systems we will consider in this thesis will not allow to type Ω, as general
intersection type systems would, notably because we restrict our attention to decidable type
systems. See Chapter 5 for more on the subject.
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x ∈ VVar
Γ, x : κ ` x : κ

a ∈ Σ has arity n
Σ

Γ ` a : on → o

Γ ` t : κ→ κ′ Γ ` u : κApp
Γ ` t u : κ′

Γ, x : κ ` t : κ′
λ

Γ ` λx. t : κ→ κ′

Figure 3.4: The simple type system for the λ-calculus (additive
presentation).

allowing to track more precise properties of terms during computations than
just being trees, tree functions. . .

An important property of the simply-typed λ-calculus states, in some sense,
its stability with respect to reduction:

Proposition 3 (Subject reduction). If Γ ` t : κ, and t →∗β t′, then Γ `
t′ : κ.

For a proof, see [GL15, Lemme 1] (in French), or [Ré13, Theorem 9]. We
prove subject reduction in the more general framework of infinitary λ-calculus
in Proposition 7 – the basic idea being similar, yet extended to an infinitary
framework using coinductive techniques.

Note that the converse property, namely subject expansion, does not hold
for the simply-typed λ-calculus: recall that the term

tw = (λx. a ) (λx. x x ) (λx. x x )

we considered earlier can be reduced to a, to which we may attribute some
simple type, while tw itself does not admit one, notably due to Theorem 7,
which we are about to state. In Part II, we will consider more expressive type
systems, which will be precise enough to allow subject expansion to hold.

A fundamental property of the simply-typed λ-calculus is the following
theorem:

Theorem 7 ([Tai67]). The simply-typed λ-calculus is strongly normalizing.

Since the normalization of a term implies that its normal form can be
computed in finite time, and that each reduction step manipulates finite data,
simply-typed λ-terms only allow to compute finite trees. Again, the standard
reduction, which computes terms by reducing head redexes first, and choosing
the leftmost one in a concurrent situation, computes the normal form we look
for. In order to compute infinite trees like T1 using terms, we need to extend
them with some infinitary, yet finitely representable behavior: recursion. As
discussed previously in the section, we could consider the Turing combinator in
the whole (untyped) λ-calculus. We would however like to restrict our attention
to an “infinitary” fragment of the λ-calculus in which an appropriate extension
of the simple type system allows to decide properties on λ-terms and on their
infinitary normal forms. Historically, several such extensions were given, in
different communities, such as higher-order recursion schemes, and the λY -
calculus, to which the next two sections are devoted. Before introducing them,
we find useful to relate two different presentations of the simple type system of
the λ-calculus, which differ in their management of contexts – an issue deeply
related to linear logic.
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x ∈ VVar
x : κ ` x : κ

Γ, x : κ, y : κ ` t : κ′ z /∈ Γ
Contraction

Γ, z : κ ` t[z ← x, y] : κ′

a ∈ Σ has arity n
Σ ∅ ` a : on → o

Γ ` t : κ′ x /∈ Γ Weakening
Γ, x : κ ` t : κ′

Γ1 ` t : κ→ κ′ Γ2 ` u : κApp
Γ1, Γ2 ` t u : κ′

Γ, x : κ ` t : κ′
λ

Γ ` λx. t : κ→ κ′

(where dom(Γ1) ∩ dom(Γ2) = ∅)

Figure 3.5: The simple type system for the λ-calculus, in its multiplicative
presentation.

Additive vs. multiplicative presentations of the type system. The
simple type system of the λ-calculus admits several presentations, which all
have different advantages. The one we gave in Figure 3.4 is called its additive
presentation. If we look closely at it, it does not precisely keep track in contexts
of the free variables occurring in the term, if we think of these derivation trees
as proof-search devices working bottom-up. For instance, in the Application
rule

Γ ` t : κ→ κ′ Γ ` u : κApp
Γ ` t u : κ′

the term u may use a free variable x which does not occur in t, so that we could
remove it from the context used to type t. This leads to the multiplicative
presentation of this rule:

Γ1 ` t : κ→ κ′ Γ2 ` u : κApp
Γ1, Γ2 ` t u : κ′

where the sum of two contexts Γ1 and Γ2, often denoted «Γ1, Γ2» is defined
here as their union – we assume that a variable can not occur in Γ1 and Γ2 with
different types. If it does, in this simple-typed framework, it means that the
same name was assigned twice, to two different variables, a case we excluded
thanks to α-conversion. This idea of splitting contexts leads to the multiplica-
tive presentation of simple type system, in Figure 3.5. We define the domain
dom(Γ) of a context Γ as the set of variables occurring in it.

This type system features two extra rules, namely contraction and weak-
ening, which are crucial to make the additive and multiplicative presentations
equivalent. Contraction notably allows to apply terms with a common free
variable: in t u, since contexts have to be disjoint to use the Application rule,
we give two different names to this same variable in t and u, and contract them
to the same variable just after the Application. Note that it is frequent to
consider an Application rule embedding the necessary contractions of contexts;
most type systems with multiplicative presentations we will consider in the
sequel will have this property.

The restriction of structural rules leads to linear logic, see for instance [Cur08].
To illustrate the equivalence of the presentations, let us consider the most elab-
orate step of the translation from an additive typing proof to a multiplicative
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one: the translation of an application rule

π1

...
Γ ` t : κ→ κ′

π2

...
Γ ` u : κAppadd

Γ ` t u : κ′

First, we rename the variables of Γ occurring in t and in u, to obtain two
contexts Γ1 and Γ2 differing only by a renaming of the variables. This renaming
also affects terms, defining t′ and u′, and proofs, giving additive proofs π′1 of

Γ1 ` t′ : κ→ κ′

and π′2 of
Γ2 ` u′ : κ

Then we suppose that, by structural induction, the additive proofs π′1 and π′2
of Γ1 ` t′ : κ→ κ′ and of Γ2 ` u′, : κ have been translated to multiplicative
proofs {|π′1 |} and {|π′2 |}. We then obtain a multiplicative proof of the sequent
Γ ` t u : κ′ as follows:

{|π′1 |}
...

Γ1 ` t′ : κ→ κ′

{|π′2 |}
...

Γ2 ` u′ : κAppmult
Γ1, Γ2 ` t′ u′ : κ′

Contractions ...
Γ ` t u : κ′

where “Contractions” means that we introduce a contraction for each variable
of Γ, in order to equalize its occurrence in Γ1 with its occurrence in Γ2. So, it
is the contraction rule which allows to translate an additive typing proof to a
multiplicative one.

In many situations, it is helpful to leave the contractions implicit: while
Γ1, Γ2 explicitly assumes that these contexts have different domains, we define
the sum of contexts

Γ1 + Γ2

as the context obtained by contracting their common variables – this operation
being only defined when these variables share the same type in both contexts.
This conveniently allows to hide considerations of α-conversion of variables,
which are particularly tedious when multiple applications need to be consid-
ered in a row.

To provide an additive representation of a multiplicative proof

π1

...
Γ1 ` t : κ→ κ′

π2

...
Γ2 ` u : κAppmult

Γ1, Γ2 ` t u : κ′
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suppose that we have translated π1 and π2 to additive typing proofs |}π1 {| and
|}π2 {| with the same conclusion. These proofs may be weakened into additive
proofs |}π′1 {| and |}π′2 {|, of the sequents

Γ1, Γ2 ` t : κ→ κ′

and Γ1, Γ2 ` u : κ, by adding the necessary variables to the contexts of
|}π1 {| and |}π2 {|. We obtain:

|}π′1 {|
...

Γ1, Γ2 ` t : κ→ κ′

|}π′2 {|
...

Γ1, Γ2 ` u : κ
Appadd

Γ1, Γ2 ` t u : κ′

In linear logic, the weakenings relating |}πi {| to |}π′i {| would be explicit,
see [Cur08].

From now on, we may use any of the two presentations. The additive
presentation is very useful for proof search, as it does not require to guess how
to split contexts when typing an Application. However, from the proof-theoretic
point of view, multiplicative proofs are very relevant, as they allow to focus
more precisely on the hypothesis to be used locally – an information which is
crucial in linear logic. Another convenience of the multiplicative presentation
is that it allows, when considering proofs, to ensure that the Axiom rules are
of the form

Axiom
x : κ ` x : κ

This will be useful, for instance, for proving Proposition 4.
In Chapter 10, we introduce a type system which needs to be presented

multiplicatively, as a modality will affect the context of the argument of an
application, and not the one of its head term. It is unclear whether it can be
translated to an equivalent additive presentation.

3.2 Higher-order recursion schemes

Recursion schemes were first introduced by Nivat [Niv72], with the notion
of recursive applicative program scheme. These schemes consist in a sort of
grammar with parameters, a typical rule being

Fi x1 · · · xn = ti

with xj : o for 1 ≤ j ≤ n, and ti a term over a signature of constants Σ, a set of
variables V, and the set {Fi } of non-terminals, satisfying a typing condition:

x1 : o, · · · , xn : o ` ti : o

for every i. A distinguished non-terminal S acts as start symbol, representing
the main function of the program to model. Rewriting non-terminals according
to the rules of the recursion scheme produce a potentially infinite Σ-labeled
tree, which is moreover ranked due to the restriction to simply-typed terms.
Recursion schemes inherently allow mutual recursion between non-terminals,
and therefore enable to abstract recursive programs.
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These schemes are however too weak to compute trees as T1, for which
higher-order recursive calls need to be considered. Historically, this extension
was not straightforward, as discussed in [Ser13, Section 2.2.2], see also [Cou90],
and led after several developments [Ind76, Dam77a, Dam77b, ES77, ES78] to
the following definition of higher-order recursion schemes (HORS), appearing
in [Dam82]:

Definition 19. A higher-order recursion scheme G = 〈Σ,N ,R, S〉 is given
by:

• a set of simply-typed variables V,

• a signature Σ,

• a set of non-terminals N ,

• a function κ : N → K attributing a simple type to each non-terminal.
We often naturally denote this simple typing as F : κ(F ).

• a function R mapping each non-terminal F ∈ N to a closed term over
the set of variables V, with constants in N ] Σ:

R(F ) = λx1. . . . λxn. t (3.4)

of simple type κ(F ), such that each of the xi is in V, and that t is a term
without abstractions,

• and of an axiom S ∈ N , also called start symbol, and such that S : o.

The order of a (higher-order) recursion scheme G is defined as

order(G) = maxF∈N ( order(κ(F )) )

Every HORS G induces a rewriting system, whose rewriting relation →G is
defined inductively over terms by

• F t1 · · · tn →G t[xi := ti] if R(F ) = λx1 · · ·λxn. t, where t is a term
without abstractions,

• and if s→G t then s u→G t u and u s→G u t.

Notice that the functionality of R makes the HORS deterministic: every non-
terminal induces a unique rewriting rule.

Example 5 (An order-1 example). Recall that we claimed that the (untyped)
λ-term (3.1) normalizes to T1. Using recursion schemes, a more convenient
representation can be given:

G1 =

{
S = L Nil
L = λx. if x (L (data x))

This recursion scheme is of order 1, as x : o. Its rewriting to a Σ-labeled
ranked tree is depicted in Figure 3.6. Notice that this representation crucially
differs from the λ-term (3.1) by the fact that no interpretation of the recursion
operator is given a priori : we just consider a syntactic rewriting mechanism

F →G R(F )
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The choice of a fixpoint operator nevertheless appears in the semantics of re-
cursion schemes. Indeed, since Nivat’s early work, the evaluation of recursion
schemes is not only considered syntactically, but also semantically in an addi-
tional domain of interpretation – recall that, by Proposition 1, every domain
is endowed with a least fixpoint operator, allowing the interpretation of recur-
sion. Such semantic considerations, among which the choice of an appropriate
fixpoint operator, are crucial aspects of this thesis, see notably Part III.

Example 6 (An order-2 example). We now consider the (higher-order) recur-
sion scheme considered by Serre in [Ser13]

G2 =

 S = M Nil
M = λx. if ( commit x ) ( A x M )
A = λy. λϕ. if ( ϕ ( error end ) ) ( ϕ ( cons y ) )

over the ranked alphabet

Σ2 = {if : 2, commit : 1, error : 1, Nil : 0, end : 0, cons : 1}

the set of variables {x : o, y : o, ϕ : o→ o }, and the set of non-terminals

{S : o, M : o→ o, A : o→ (o→ o)→ o }

This recursion scheme is of order 2, since it is the order of κ(A), and that both
S and M are attributed a type of lesser order. The variable ϕ allows to pass
continuations in the recursion scheme. The first steps of rewriting of G2 are
depicted in Figure 3.7.

Unlike Example 5, reduction leads in Example 6 to trees in which several
non-terminals may be reduced. The tree produced by a recursion scheme will
be the one obtained by the “most productive” rewriting sequence, an intuition
whose formalization gives the formal definition of the tree 〈 G 〉 produced by a
HORS G.

Definition 20 (Domain of trees). We consider the set Trees⊥(Σ) of (Σ ] {⊥})-
labeled ranked trees, where ⊥ : 0 may only labels leaves, with a partial order
over nodes:

for a, b ∈ Σ ] {⊥}, a 4 b ⇐⇒ a = b or a = ⊥

extending to a partial order over trees: for t, t′ ∈ Trees⊥(Σ),

t 4 t′ ⇐⇒ Dom(t) ⊆ Dom(t′) and α ∈ Dom(t)⇒ t(α) 4 t′(α)

The partial order (Trees⊥(Σ), 4) is a domain.

The rewriting process induced by a recursion scheme produces (Σ ]N )-
labeled trees. Note that it progresses in some sense: a Σ-labeled prefix of a
tree obtained during the rewriting process will never be modified in the sequel
of the computation. It therefore makes sense to define the greatest such prefix
as the partial production of a rewriting sequence:
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Definition 21. Let t be a (Σ ]N )-labeled tree obtained via a reduction se-
quence

S →∗G t

We define the partial production t∇ of this reduction sequence by induction on
t:

• if t = a ∈ Σ, t∇ = a,

• if t = F ∈ N , t∇ = ⊥,

• if t = t0 t1 · · · tn, t∇ = ⊥ if t∇0 = ⊥, and t∇ = t∇0 t∇1 · · · t∇n else.

Figure 3.8 depicts the partial productions at every step of the rewriting
sequence on G1 represented in Figure 3.6.

Recall that since Trees⊥ is a domain, every family of (Σ ] {⊥})-labeled
ranked trees whose pairs of elements always have a common supremum – that
is, every directed family of trees – has a supremum. The rewriting relation of
recursion schemes is confluent, so that the family{

t∇ ∈ Trees⊥ | S →∗G t
}

is directed. The idea is that every partial production is a prefix of the value tree
of G, and that two partial productions can be “combined” to a bigger one – this
being the informal meaning of confluence. Trees⊥ being a domain means that
a family of prefixes of the same tree can be combined altogether to produce
this tree.

Definition 22 (Value tree of a HORS). The value tree of a HORS G, also
called the tree generated by G, is defined as the supremum

〈 G 〉 =
∨ {

t∇ ∈ Trees⊥ | S →∗G t
}

of the directed family of partial productions of all reduction sequences of G, in
the domain Trees⊥.

On productivity. Notice that the value tree of a recursion scheme G may
contain the divergence symbol ⊥, corresponding to the fact that the infinite
rewriting of the subtree rooted at this symbol never produces a head symbol.
Consider for instance

Gdiv =

 S = M Nil
M = λx. if ( commit x ) ( A x M )
A = λy. λϕ.A (M y ) (A (ϕ y ) ϕ )

The beginning of a possible rewriting sequence for Gdiv is depicted in Figure 3.9.
The problem is that the rule for A outputs A again as its head symbol, so
that whatever we reduce below A, the partial production of the corresponding
rewriting sequence will never increase, and the value tree of Gdiv is the partial
tree
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〈 Gdiv 〉 =

if

⊥commit

Nil

An important fact is that higher-order recursion schemes are not Turing-
complete, which would have made undecidable the question of determining
whether the divergence symbol ⊥ occurs in the value tree of a given recursion
scheme. This lack of Turing-completeness can be understood by noticing that
the absence of pattern-matching forbids the definition of the predecessor func-
tion of arithmetics in the language of recursion schemes. We call productive a
recursion scheme whose value tree does not contain the divergence symbol ⊥.
As we shall see in §3.5, it is decidable whether a recursion scheme of order n is
productive, and the complexity of the problem is n-EXPTIME. Even better,
from a HORS G over a signature Σ whose value tree contains the divergence
symbol ⊥, we can effectively compute a productive HORS Gprod, over the sig-
nature Σ ] {Ω}, whose value tree only differs from the one of G by the fact that
the divergence symbol ⊥ is replaced by the distinguished divergence constant
Ω. Gprod is productive, since instead of rewriting forever a term with no head
normal form, it only outputs once the divergence constant Ω, and then stops
the computation of the branch.

In fact, a consequence of the extension of the simply-typed λ-calculus to
this recursive formalism that are higher-order recursion schemes is that

well-typed programs can’t go too wrong,

since their divergence can effectively be eliminated by the construction sketched
in §3.5. In the sequel, we may therefore restrict ourselves to the case where
every HORS is productive.

On regularity. Notice that the regular trees defined in §2.1 correspond to
the trees generated by order-0 recursion schemes, which correspond to sets of
equations

Fi = ti

where ti does not contain variables nor abstractions, and is therefore a fully-
applied term consisting of applications of elements of Σ. In other terms, it is
a tree context containing calls to non-terminals Fj , and we can thus represent
a tree generated by an order-0 recursion scheme folded as a finite graph. We
extend this notion of regularity in the following way:

Definition 23 (Higher-order regularity). We say that a tree t is higher-order
regular, or regular of order n, if there is a higher-order recursion scheme G of
order n such that t = 〈 G 〉.

This notion encompasses other familiar classes of finitely generated trees:
order-1 regular trees correspond to algebraic trees, generated by context-free
grammars, while order-2 regular trees correspond to hyperalgebraic trees.
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Reduction strategies. The definition of the value tree of a recursion scheme
does not provide an effective strategy of computation. In his influential paper
on evaluation strategies for higher-order recursion schemes, Damm [Dam82]
introduced the OI (outermost-innermost) and IO (innermost-outermost) evalu-
ation policies, which are strongly reminiscent, respectively, of the call-by-name
and call-by-value strategies we discussed in the previous section for the λ-
calculus. OI strategies are notably known to be more productive than IO ones,
precisely for the reasons we discussed about CBN and CBV. Damm proved
that the value tree of a recursion scheme can be computed using a OI policy
– which corresponds, in a slightly different framework, to the fact that head
reductions (or, equivalently, Böhm normalization) compute the normal forms
of λ-terms.

Just as call-by-name and call-by-value evaluation strategies could be related
in the λ-calculus through CPS translations, an analogous translation between
OI and IO evaluation policies of recursion schemes can be designed, see Had-
dad’s work on the subject [Had12,Had13b].

3.3 A simply-typed λ-calculus with fixpoints

Higher-order recursion schemes may be understood as an extension of the
simply-typed λ-calculus where terms feature typed recursion of any order, and
normalize to trees. We therefore extend the simply-typed λ-calculus with a
family of typed syntactic fixpoint operators

Yκ : (κ→ κ )→ κ

indexed by the simple types κ ∈ K, and introduce a family of reduction rules

Yκ (λx.M ) →δ M [x← Yκ (λx.M )]

The resulting calculus is named the λY -calculus [Sta02]. Note that the com-
binators Yκ are considered as constants extending the set of constants Σ of
interest, so that the rules of Figure 3.4 provide a simple type system for the
λY -calculus as well.

The subject reduction of the simply-typed λ-calculus can be extended by
considering the rewriting of a term under the rule →δ, in addition to the rule
→β . We consider the multiplicative variant of the simple type system for
convenience.

Proposition 4 (Subject reduction for the λY -calculus). Given a λY -term t,
suppose that Γ ` t : κ. If t→∗βδ t′, then Γ ` t′ : κ.

The preservation of the type of a term rewritten by the rule →δ in a given
context is depicted in Figure 3.10. Notice that it can be understood as a proof
rewriting, and that is convenient to use the multiplicative variant of the type
system, as it ensures that Axiom leaves are of the shape

Axiom
x : κ ` x : κ
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HORS and the λY -calculus. Subject reduction ensures that the normal
form, if it exists, of a λY -term of simple type o is again of type o: productive
simply-typed λ-terms with recursion therefore generate trees over their signa-
ture of constants. These trees are computed by Böhm evaluation, which can
be extended to handle the rule →δ:

BT (Y (λx. t )) = BT (t [x← Y (λx. t )])

which specifies the canonical evaluation of untyped λ-terms to a canonical
evaluation for λY -terms. Using a Church encoding, we can understand the
normal form of a λY -term of simple type o over the signature of constants Σ
as a Σ-labeled ranked tree. Terms of ground type of the λY -calculus are then
equivalent to HORS, for that they evaluate to the same trees:

Proposition 5 (HORS and λY -terms [DF80]). Considering implicitly the cor-
respondence between terms and trees obtained by a Church encoding, we have:

• For every closed λY -term t of type o over the signature of constants
Σ, there exists a HORS Gt over the same signature whose value tree
represents the normal form BT (t) of t.

• For every HORS G over a signature Σ, there exists a closed λY -term tG
of type o normalizing to 〈 G 〉, and defined over the same signature.

The translation is described in [SW12]; we sketch on p.257 the translation
from higher-order recursion schemes to λY -terms. The converse direction is
more subtle.

Instead of adding explicitly constants from a signature to the grammar of
λ-terms or λY -terms, we could treat them as free variables of order 0 or 1. We
obtain in this case a similar proposition, where the terms are no longer closed,
but with free variables of order at most one, to be thought of as the elements of
Σ. This subtle difference, seen under the prism of linear logic, will allow us to
disclose the dual behavior of terms and tree automata in a very precise sense,
see §9.1.

Comparison with the untyped λ-calculus and HORS. Contrary to the
(untyped) λ-calculus, we only consider typed terms in the λY -calculus. More-
over, the fixpoint operator we introduce is external to the calculus, whereas
the fixpoint combinators YChurch and YTuring we considered in §3.1 were part
of the language – but typing them would be problematic, as they rely on the
auto-application of terms. In the λY -calculus, the syntactic reduction comput-
ing the fixpoint is not only externalized, but also performed in one only step
using the →δ rule.

While the λY -calculus and higher-order recursion schemes compute the
same trees, there is more freedom in the reductions one can perform in the
former, as in the latter the rewriting rule →G can be understood as a “big-
step” relation

→G = →δ (→β )
∗

where all the redexes introduced by the rule expansion F → R(F ) are reduced
on-the-fly by a series of applications of the reduction rule →β . Moreover, →G
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only allows the expansion of fully-applied terms, while →δ would allow for
instance to expand the occurrences of the non-terminal M occurring as leaves
– that is, missing an argument – in Fig 3.7.

3.4 The higher-order model-checking problems

After these two introductory chapters, we may now state the problems related
to higher-order model-checking (HOMC) we will investigate in this thesis at
the light of linear logic, which will allow us to connect very naturally the
intersection type theory used by Kobayashi and Ong for higher-order model-
checking [KO09] with denotational semantics.

The first, and somehow historical problem, is to decide whether an MSO
formula holds at the root of the value tree of a recursion scheme:

Definition 24 (The local HOMC problem). Given a functional program with
recursion, abstracted as a Σ-labeled ranked tree of actions 〈 G 〉 computed by a
higher-order recursion scheme G, and an MSO formula ϕ over the set of actions
Σ, can we decide whether ϕ holds at the root of 〈 G 〉?

Since the branching in 〈 G 〉 intends at modeling the conditional branchings
of the program, checking ϕ at its root amounts to check whether the formula
holds at the beginning of the execution of the program. The formula may state
the existence of executions satisfying certain properties, or require that every
execution meets some requirement.

The equivalence between the satisfaction of a formula ϕ and the existence of
a winning execution tree of a corresponding automatonAϕ stated by Theorem 3
leads to the following reformulation of the problem, which we will favor in the
sequel of this thesis:

Definition 25 (The local HOMC problem, automata-theoretically). Given a
higher-order regular tree 〈 G 〉 computed by a higher-order recursion scheme G,
and an alternating parity automaton A, can we decide whether A has a winning
execution over 〈 G 〉, starting from its initial state?

One may want to check not only the truth of a formula at the root of a
higher-order regular tree, but on each of its nodes, leading to the following more
difficult problem introduced in [BCOS10] — where it is called logical reflection:

Definition 26 (The global HOMC problem). Given a higher-order regular
tree 〈 G 〉 produced by a higher-order recursion scheme G, and an MSO formula
ϕ, can we compute a higher-order recursion scheme Gϕ producing a lifting 〈 Gϕ 〉
of 〈 G 〉, obtained by annotating with a distinguished symbol • every label of a
node of 〈 G 〉 where ϕ holds?

Again, an automata-theoretic reformulation is possible, see [Had13b]. How-
ever, we will not need to consider this reformulation of the global HOMC prob-
lem in the sequel, as we will focus on the strictly harder problem of MSO
selection, introduced by Carayol and Serre in [CS12]:

Definition 27 (The selection problem). Given a higher-order regular tree
〈 G 〉 computed by a higher-order recursion scheme G, and an existential MSO
formula ∃X.ϕ[X], can we compute a higher-order recursion scheme producing
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a lifting 〈 Gϕ 〉 of 〈 G 〉 obtained by annotating with • a set of nodes Y such that
ϕ[Y ] holds?

This problem encompasses the global higher-order model-checking one: for
an MSO formula ψ, the selection problem for the existential MSO formula
∃X. x ∈ X ⇔ ψ[X] reduces to the global HOMC of ψ. In the sequel, we
will more precisely consider the automata-theoretic version of this problem
introduced by Haddad [Had13a], which asks whether the existence of a winning
run-tree of an alternating parity automaton over a higher-order regular tree
implies the existence of a higher-order regular winning execution tree of this
automaton:

Definition 28 (The selection problem, automata-theoretically). Given a
higher-order regular tree 〈 G 〉 computed by a higher-order recursion scheme G,
an alternating parity automaton A, and a state q of this automaton from which
〈 G 〉 is accepted, can we compute a higher-order recursion scheme Gq producing
a winning run-tree 〈 Gq 〉 of A from q over 〈 G 〉?

On decidability. These problems were all proven decidable by several inde-
pendent methods:

• For the local model-checking problem, independent proofs appear in [Ong06,
HMOS08,KO09,SW14,TO14,SW15a,GM15a]

• For the global model-checking problem, also called logical reflection, see
[BCOS10,SW14,SW15a]

• For the selection problem, see [CS12,Had13a,TO14,GM15a].

Descriptions of these approaches are given in the related works, see §1.2.

Verification of higher-order terms. These problems are concerned with
the verification of MSO properties over infinite trees, generated by the head
normalization of λY -terms of simple type o. Clairambault and Murawski use a
de Bruijn representation of binders to encode Böhm trees of λY -terms of any
simple type into higher-order recursion schemes. They reduce in this way the
verification of properties over the Böhm trees of λY -terms to their verification
over HORS. Note that these properties must be formulated over the de Bruijn
representation of the Böhm tree, and not directly on the Böhm tree itself.
By reduction to the case of HORS, the model-checking of these properties
is decidable; it would have not been the case for the general case of MSO
properties over Böhm trees (without de Bruijn encoding) which, as they show,
is undecidable.

3.5 Productivity and higher-order recursion schemes

As claimed earlier, it is possible to decide whether a recursion scheme G is
productive and, if it is not, to compute effectively a productive HORS Gprod such
that 〈 G 〉 and 〈 Gprod 〉 have the same tree domain, coincide on their Σ-labeled
nodes, and such that the divergence symbol ⊥ occurring in 〈 G 〉 is replaced in
〈 Gprod 〉 by a distinguished nullary symbol Ω. The difference comes from the
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fact that, instead of being the result of an infinite, divergent computation, Ω
is a symbol which will be outputted in one step during the evaluation of Gprod.

Several constructions lead to this result, one of them consisting in evaluating
the terms appearing in the rewriting of the recursion scheme in a domain, and
then on modifying these rules according to their semantics, see for instance the
procedure of ⊥-elimination of [Had13b, Section 3.3.6].

We explain here an alternative and elegant construction due to Serre [Ser13,
Section 9.2.4]. It is performed in several steps:

G → Gε → Gϕε → Gprod

where:

• Gε is a productive recursion scheme, obtained from G by introducing a
new symbol ε : o→ o in the signature Σ, and by replacing every rewrite
rule

R(F ) = λx1. . . . λxn. t

with
R(F ) = λx1. . . . λxn. ε t

making each rule productive,

• and by considering the MSO formula

ϕ = ∃X. ( root ∈ X ∧ ∀x ∈ X. ( ε(x) ∧ (∃y ∈ X. succ(x, y) ) ) )

adapted from the formula ϕM1,coind of Example 2 to detect infinite branches
containing only the symbol ε. The application of the effective construc-
tion provided by the decidability of the global model-checking problem
leads to the definition of Gϕε ,

• and Gprod is finally defined by considering each rewrite rule of Gϕε , and
by

– replacing it with
R(F ) = λx1. . . . λxn. t

if it is of the shape

R(F ) = λx1. . . . λxn. ε t

– and replacing it with

R(F ) = λx1. . . . λxn.Ω

if it is of the shape

R(F ) = λx1. . . . λxn. ε
• t

Let us illustrate this construction by a few drawings. Consider a partial
rewriting of G in which the rewriting of some occurrence F of a non-terminal
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will never actually produce anything — the most simple case being F = F
— while another occurrence of a non-terminal G will be productive:

FG

Since rewriting F does not produce anything, the value tree 〈 G 〉 of G will have
the shape

〈 G 〉 =

⊥

However, in Gε, each unproductive call to F will output a head symbol ε, so
that 〈 Gε 〉 will be

〈 Gε 〉 =

ε

ε ε
ε
ε
...

This tree does not contain the symbol ⊥, so that Gε is productive. By applying
the construction of the global model-checking problem, we obtain Gϕε whose
value tree is 〈 Gϕε 〉:

〈 Gϕε 〉 =

ε

ε ε•
ε•
ε•...

Since the marking only affects the symbols where ϕ is true, that is, from which
we read an infinite sequence of ε, every marked node of this tree is precisely
tracking an unproductive call to the recursion operator. Since this tree is
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higher-order regular, it is enough to remove in a recursion scheme representing
it every non-terminal call marked with ε• to get rid of unproductive calls. By
replacing them with the symbol Ω, we get the productive recursion scheme
Gprod, whose value tree is

〈 Gprod 〉 =

Ω





Chapter 4

Coinductive evaluation of
infinitary λ-terms

Both higher-order recursion schemes and λY -terms are finite representations of
infinitary objects, which they compute by successive finite approximations. In
this chapter, we introduce a coinductive framework which encompasses them:
we consider infinitary terms in §4.1, and their rewriting in §4.2. We also
introduce an associated proof technique, coinduction, which has gained much
attention from the λ-calculus community in the last years, for that it allows
to manipulate infinitary objects without explicitly dealing with their finite
approximations. We introduce a simple type system for infinitary terms, and
prove its subject reduction in §4.3. We then discuss the relation with higher-
order model-checking in §4.4.

4.1 Corecursive structures and infinitary λ-terms

The traditional approach in semantics, when it comes to infinite computation,
is to consider them as the limit of their finite approximations. When the
considered model is a domain, the notion of continuity is crucial: a continuous
function between domains ϕ : D → D′ is a monotonic function such that, for
every directed family D ⊆ D

f
(∨

D
)

=
∨

f (D ) (4.1)

Note that the monotonicity of f ensures that the family f(D) is directed in
D′. A typical situation of continuity is the evaluation of higher-order recur-
sion schemes in the domain Trees⊥(Σ) of partial productions: its set of finite
approximations is enough to represent the infinite tree 〈 G 〉. Conversely, a
non-continuous behavior which is to be central in this thesis is the one of the
parity condition of tree automata. Note that the execution of the alternating
parity automaton itself is continuous, as it generates an infinite tree labeled
with states and which can be described as the limit of a directed family of
partial, finite runs. The non-continuous behavior is the one of the parity con-
dition, which occurs after this continuous execution phase, and violates (4.1):
no approximation of the execution tree suffices to determine whether it will be
winning for the parity condition.

85
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The infinite tree 〈 G 〉 contains infinite branches, that is, non-well founded1

branches, as they do not have leaves. The traditional approach uses well-
founded trees to approximate a non-well founded one, and leads to reasoning
over finite approximations and then on using continuity to extend the reasoning
to the infinite tree of interest.

An alternative consideration of infinity comes with the notion of coinduc-
tion, over corecursive structures. As a powerful, infinitary proof technique,
coinduction has received a lot of interest in the recent years, although it orig-
inated in Aczel’s pioneering work on non-well founded sets [Acz88] in the late
eighties. Important work on the subject is also due to Barr [Bar93]. For a
historical overview of coinduction, see [San09].

Coinduction is dual to induction, and can be understood as the compu-
tation of a greatest fixpoint of a monotone endofunction f over the complete
lattice P(A) obtained as the powerset of some set A. Recall from §2.3 that
the least fixpoint µX. f(X) can be computed starting from just one element –
the empty set – and by iterating f over it, leading to bigger and bigger sets
until the sequence eventually stabilizes. Dually, coinduction starts from the
top element of P(A), that is, from the set of all subsets of A, and iteratively
removes the ones which can not have been produced out of f , until the sequence
stabilizes to νX. f(X) – which can be an infinite set. Coinduction notably al-
lows the emergence of a behavior that induction does not capture: νX. f(X)
may contain self-justifying sets, which can be understood as a form of regular
infinite productions of the fixpoint computation. In general, coinduction offers
firm foundations for the consideration of infinite objects.

Let us give an informal intuition of what coinduction allows, when it comes
to infinite trees. Consider the signature

Σ = { a : 2, b : 1 }

and the Σ-labeled ranked regular tree

Treg =

a

b

a

b

...

b

...

b

a

b

...

b

...

represented by the grammar

F = a ( b F ) ( b F ) (4.2)

1We prefer this terminology to the semantically strong ill-founded. As it will appear in
the sequel, there is no foundational problem with these trees, they just extend the usual,
finite case to higher ordinal depths.
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Denoting T the set of Σ-labeled ranked trees, this grammar represents a fix-
point of the function

f : T → T
t 7→ a ( b t ) ( b t )

which needs to contain infinite branches, and thus cannot be captured by an
inductive construction. Dually, to compute an infinite tree such that t = f(t),
coinduction starts from the set of all trees T . The first approximation of the
fixpoint is then the set f(T ) of Σ-labeled ranked trees with tree prefix

a ( b [ ] ) ( b [ ] )

and the second approximation is then f(f(T )), containing trees with tree prefix

a ( b ( a ( b [ ] ) ( b [ ] ) ) ) ( b ( a ( b [ ] ) ( b [ ] ) ) )

Coinduction iterates this tree discrimination until the limit ordinal ω, at which
step only one solution remains, namely the Σ-labeled ranked tree Treg. In gen-
eral, the existence and unicity of the coinductive solution of a guarded equation
as (4.2) — see Definition 29 — will follow from Theorem 8.

In order to ease the manipulation of coinductive structures, and the proofs
over them, a subsequent work in establishing a theory of coinductive proof
techniques has been done. The resulting techniques do not explicitly mention
the ordinals used in the computation of the fixpoint, under some constraint of
productivity – the result can be seen as a constrained form of transfinite induc-
tion, in which ordinal jumps do not require a particular treatment, and which
notably hides conveniently questions of topological convergence to which pro-
ductivity is deeply related, see for instance the introduction of [EP11]. In the
sequel, we essentially follow the introduction on the subject by Czajka [Cza15]
to provide the reader with elements of coinductive proof theory, and we give an
alternate viewpoint on the λY -calculus, seen as a fragment of infinitary simply-
typed λ-terms. Another interesting reference for the reader new to coinduction
is [KS12].

Infinitary terms. Terms of the λY -calculus may indeed be understood as
infinitary terms with a finite representation: given a term t of the λY -calculus,
we define t∞ as the infinitary λ-term obtained by an infinite iteration of the
rule →δ, without performing any substitution using →β . Similarly, a higher-
order recursion scheme G produces an infinitary term t∞(G) by unfolding its
rules infinitely, without performing any substitution. Such infinitary terms will
correspond to ranked trees of potentially countable depth, over the signature

Σterms = Σ ] {x : ar(x) | x ∈ V } ] {λx. : 1 | x ∈ V } ] {@ : 1 }

where Σ is the signature of constants of the term, V its set of variables, and @
is a distinguished application symbol used to mark explicitly the application
of two terms: the application t0 t1 is represented as

@

t1t0
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and more generally t0 t1 · · · tn is represented as

@

tn@

tn−1@

@

t1t0

For instance, the recursion scheme G1 of Example 5 corresponds to the infinite
Σterms-labeled ranked tree

t∞(G1) =

@

Nilλx.

if

@

data

x

λx.

if

...
...

x

Following [Cza15], when working in a coinductive framework, we call coterm
over the signature Σ a Σ-labeled ranked tree; we denote their set with Coterms(Σ).
The choice of this word stresses the fact that such infinite definitions can be
obtained coinductively, that is, using greatest fixpoints of appropriate func-
tions, see [Cza15] for details and for an extension of the notion of coterm to
many-sorted signatures.

Example 7 (Streams). The most canonical example of coinductive structure
is probably streams: given a set A of actions, we consider the signature

ΣA = { a : 1 | a ∈ A }

and define streams overA as Σ-labeled coterms. We denote their set Streams(A).
A stream over A can alternatively be understood as an infinite word of elements
of A; it typically comes with two associated functions:

• the head function hd : Streams(A) → A, which maps a stream to the
label of its root,
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• and the tail function tail : Streams(A) → Streams(A), which erases
the root and returns the resulting stream.

A stream s satisfies the equation

s = hd(s) :: tail(s)

where :: is the concatenation operator, adding a finite prefix to the beginning
of a stream.

This example, in spite of its simplicity, illustrates a crucial fact:

induction is dual to coinduction

with the important consequence that while inductive data is constructed by
adding symbols, coinductive data is accessed using destructors. Note that
accessing a stream and removing its head symbol results in another stream:
the infinitary nature of the object is preserved. Infinite trees should be thought
of just in the same way – in a sense, they are just branching streams, whose
head can be read and removed, resulting in a family of infinite trees.

Streams over A are defined by the equation

Streams(A) = A × Streams(A) (4.3)

and the existence and unicity of this set will follow from Theorem 8. Denoting
the greatest fixpoint as ν, the type of streams is often denoted as

νX.A×X

in the literature, which is another way to say that they are the greatest solution
of (4.3).

Equality and bisimilarity. Equality of coterms can be defined using finite
approximations: two coterms t and t′ are equal if and only if they have the
same domain, and that their restrictions to the same finite subdomain coincide.
A coinductive characterization of equality can be expressed, via the notion of
bisimilarity introduced in Definition 6.

Given a set S, a relation R ⊆ Sn is a coinductive relation if it is the greatest
fixpoint of a monotone function FR : P(S)→ P(S). We typically define such
relations by a set of coinductive rules; for instance, the bisimilarity relation ≡
on coterms over Σ is defined by the set of rules

ti ≡ t′i for every i ∈ {1, . . . , n}
a ∈ Σ

a(t1, . . . , tn) ≡ a(t′1, . . . , t
′
n)

Formally, it is defined as the greatest fixpoint of the monotone function

F≡ : Coterms(Σ)2 → Coterms(Σ)2

T × T ′ 7→ { (t, t′) ∈ Coterms(Σ)2 | ∃a ∈ Σ ∀i ∈ {1, . . . , n}
∃(ti, t′i) ∈ T × T ′ ti ≡ t′i

∧ t = a(t1, . . . , tn)
∧ t′ = a(t′1, . . . , t

′
n) }
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Informally, two terms t and t′ are bisimilar if there exists a potentially infinite
derivation of t ≡ t′ using the family of rules defining ≡. More generally, when
defining a coinductive relation R using deduction rules, we have that t, t′ ∈ R
if and only if there exists a proof of potentially infinite depth of t R t′.

Bisimulation is in fact an infinitary, coinductive presentation of equality:

Proposition 6. Given a signature Σ and t, t′ ∈ Coterms(Σ), we have that
t = t′ if and only if t ≡ t′.

Cogrammars. The equation (4.3) suggests yet another presentation of streams,
using a coinductive grammar

S ::= a1 :: S | · · · | an :: S

where A = { a1, . . . , an }. More generally, given a signature

Σ = { ai : ar(ai) | i ∈ I }

the set of coterms t over Σ can be represented by the coinductive grammar

t ::= a1 t · · · t︸ ︷︷ ︸
ar(a1)

|| · · · || an t · · · t︸ ︷︷ ︸
ar(an)

For instance, considering the signature Σ1 = { if : 2, data : 1, Nil : 0 } of
Example 1, the coinductive grammar

t ::= if t t || data t || Nil

generates a set of coterms which precisely correspond to Σ1-labeled ranked
trees, under the usual term-tree correspondence.

A cogrammar for infinitary λ-terms. Given a signature Σ providing a
set of constants, and an infinite set of variables V, infinitary λ-terms can be
alternatively defined by the cogrammar

t, u ::= x || a || λx. t || t u

where x ∈ V is a variable and a ∈ Σ a constant. Note that this representation
slightly differs from the one we previously gave for infinitary λ-terms, as we
implicitly hide the application symbol @ in this representation. The result
being equivalent, we will favor this representation in the sequel.

Regarding variables, usual notions of the λ-calculus are preserved by this
infinitary extension, see [Cza15] for details:

• the notion of free variable is defined similarly,

• although it is not as straightforward, we may consider only α-renamed
terms, that is, terms in which each variable name corresponds to a unique
variable. This typically requires an uncountable set of variables V.

The infinite rewriting system associated to these infinitary λ-terms is intro-
duced in §4.2.
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Corecursive definitions; productivity. In order to justify corecursive def-
initions such as (4.2), we need to check the productivity of the function whose
greatest fixpoint is computed. A simple requirement is to restrict our attention
to guarded functions:

Definition 29. Given a signature Σ, a function f : Coterms(Σ)n → Coterms(Σ)
is constructor-guarded if it can be decomposed as

f(t1, . . . , tn) = a
(
g1 (t1, . . . , tn) , . . . , gar(a) (t1, . . . , tn)

)
where a ∈ Σ is a constant, and for each i ∈ {1, . . . , ar(a)}:

• gi is constructor-guarded,

• or gi is a constant function,

• or gi is a projection: there is j ∈ {1, . . . , n} such that

gi (t1, . . . , tn) = tj

More generally, given a set S of parameters and a function f : S ×
Coterms(Σ)n → Coterms(Σ), we say that f is constructor-guarded if, for
every x ∈ S, the function

fx : (t1, . . . , tn) 7→ f(x, t1, . . . , tn)

is constructor-guarded.

Such guard conditions ensure productivity; yet they are quite restrictive.
More general classes of productive functions can be captured using for instance
sized types, which are beyond the scope of this thesis, the idea being that some
measure has to increase during the computation of the solution, in order to
guarantee (topological) convergence to a unique solution. Constructor-guarded
functions allow the coinductive definition of objects:

Definition 30 (Guarded corecursion). A functional equation

∀x ∈ S f(x) = h (x, f(g1(x)), . . . , f(gn(x))) (4.4)

is said to be guarded corecursive if f : S → Coterms(Σ) and

• h : S ×Coterms(Σ)n → Coterms(Σ) is a constructor-guarded function,

• ∀i ∈ {1, . . . , n}, gi is an endofunction over S.

A folklore theorem in the coalgebra community ensures the definition of
such a function f :

Theorem 8. Each guarded corecursive functional equation (4.4) has a unique
solution f : S → Coterms(Σ).

In a sense, these equations generalize the concept of regularity for infinite
trees to all coterms. We can therefore see the λY -calculus as the regular frag-
ment of the infinitary λ-calculus.
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Example 8 (Corecursive functions over streams). On Streams(A), the guarded
corecursive equation

even(t) = hd(t) :: even(tl(tl(t)))

defines a unique function even, mapping a stream to the stream obtained by
keeping its first element, dropping its second, keeping its third, and so on.
Considering the streams one, zero and alt defined by guarded corecursion:

one = 1 :: one

zero = 0 :: zero

alt = 1 :: 0 :: alt

we have that even(alt) = one, and even(tl(alt)) = zero. Another example
is the function zip, again defined by guarded corecursion:

zip(x :: t, s) = x :: zip(s, t)

We see intuitively that
alt = zip(one, zero)

and that, for any stream t,

zip(even(t), even(tl(t))) = t

but we lack a proof principle to firmly establish it – this is where coinductive
proofs will be useful.

To conclude this example, let us mention two more tricky corecursive “def-
initions” from [BH15]: first of all, considering the set Streams(B) of streams
over booleans, we naturally extend the negation operation to streams:

¬ (x :: s ) = (¬x ) :: (¬ s )

where x ∈ B and s ∈ Streams(B). We may then define the stream altB by

hd(altB) = ⊥
tl(altB) = ¬ altB

This definition is not constructor-guarded, as the construction of the tail of the
stream does not output a symbol, but refers directly to a function call on the
stream itself. Yet it is productive: the reader may check that

altB = ⊥ :: > :: ⊥ :: > :: altB

since
hd(tl(altB)) = hd(¬ altB) = ¬hd(altB) = ¬⊥ = >

and so on: there are productive, yet non guarded objects. There also are
unproductive equations, leading to ill-defined “streams”: consider for instance
the stream evil such that

hd(evil) = ⊥
tl(evil) = even(evil)
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Coinductive proofs. We now introduce the notion of coinductive proof, al-
lowing us to prove statements on corecursively-generated objects. We will write
these proofs in a quite informal style, which hides most of the underlying the-
oretic machinery. We follow in this way the approach of Czajka [Cza15], who
provides firm foundations – using sized CPOs – for this seemingly informal
style. As we said earlier, coinductive proofs allow, under some conditions, to
reason on infinite objects defined as greatest fixpoints, without having to ex-
plicitly consider their approximations at all ordinal heights lesser than their
closure ordinals. The resulting framework is very convenient and, even if it is
not subtle enough to prove all properties on a general object defined as the
greatest fixpoint of some productive endofunction, it will be sufficient for the
purpose of this thesis.

Roughly speaking, a coinductive proof proceeds by supposing that the result
we want to prove is true up to some ordinal α, and to prove that it holds
for the next ordinal as well – but all that by keeping the ordinals implicit.
Some productivity is required in the proof, in order to increase the ordinal we
consider. Let us prove by coinduction that

zip(even(t), even(tl(t))) = t (4.5)

Suppose that, for every stream t over A, the equation (4.5) holds. This will
be our coinductive hypothesis. Consider then a given stream x :: y :: t, with
x, y ∈ A; we have that

zip(even(x :: y :: t), even(tl(x :: y :: t))) = zip(x :: even(tl(y :: t)), even(y :: t))
= x :: zip(even(y :: t), even(tl(y :: t)))
= x :: y :: t

(by coinductive hypothesis)

and the coinduction principle permits us to conclude that Equation (4.5) is true
for every stream. Note two crucial facts, which will be required by coinductive
proofs:

• the proof has to be productive in a sense: we need to call the coinductive
hypothesis on a strictly lower ordinal than the depth of the coterm we
want to prove the equation valid for. Here, the proof is made on the
stream x :: y :: t, while the coinductive hypothesis is applied to y :: t,
so that this condition is satisfied,

• we do not assume anything on the stream y :: t we apply the coinductive
hypothesis to – we would not be allowed, for instance, to perform case
reasoning over it. In general, no assumption may be taken on the object
the coinductive hypothesis is applied to.

4.2 Coinductive normalization of infinitary λ-terms

The normalization of infinitary λ-terms raises concerns about productivity
again: while it seems quite natural to extend β-reduction and the other rewrit-
ing relations presented in §3.1 to this infinitary setting, one has to take care
that all redexes are at finite depth: the reduction should not explore the tree
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s →∗ a

s →∞ a

s →∗ λx. t t →∞ t′

s →∞ λx. t′

s →∗ t1 t2 t1 →∞ t′1 t2 →∞ t′2

s →∞ t′1 t
′
2

Figure 4.1: Coinductive closure →∞ of a relation → on infinitary λ-terms.

infinitely without finding any. In fact, we define the β-reduction of infinitary
terms inductively, simply by replacing finite terms with infinitary ones in Fig-
ure 3.1. In the same spirit, we extend the inductive definition of →w and →h

to infinitary terms. Since these terms contain a potentially infinite amount
of redexes, their reduction will require a coinductive use of →β . Interestingly
enough, such constructions using coinductive calls of inductive constructions
to enforce productivity appear in other areas of theoretical computer science,
as in type theory for instance [MV05].

A first temptation is therefore to define the relations→∞β ,→∞w and→∞h by
replacing → in Figure 4.1 with each of them. This relation allows to compute
coinductively the normal form of productive infinitary λ-terms, that is, of terms
in which an inductive iteration of the β-reduction relation always outputs a
symbol. To properly define an analogous of the Böhm reduction (Definition 18),
we need to add the rule

t has no →-normal form
t →∞⊥ ⊥

and this defines→∞β⊥,→∞w⊥ and→∞h⊥. Just as in the λ-calculus, normal forms,
when they exist, are computed by head reductions:

Theorem 9 ([EP11]). Given two infinitary λ-terms t and t′, we have that

t →∞β t′ if and only if t →∞h t′

To capture the whole Böhm reduction, Czajka [Cza15] introduces the par-
allel coinductive head reduction →∞N :

t →∗h λx1 · · ·λxm. a t1 · · · tn ti →∞N t′i (∀i) a 6≡ ⊥
t →∞N λx1 · · ·λxm. a t′1 · · · t′n

t has no hnf
t →∞N ⊥

Note that the idea of the second rule, reducing terms without a head nor-
mal form to the divergence symbol ⊥, was earlier considered in the setting of
infinitary λ-calculus by Severi and de Vries [SdV02], who also obtained the
theorems of confluence and of normalization we are about to state. However,
their work relies on a presentation of reduction using transfinite sequences of
ordinals, while Czajka’s reformulation is purely coinductive.



4.3. SIMPLY-TYPED INFINITARY TERMS 95

Theorem 10 ([Cza15]). Given two infinitary λ-terms t and t′, we have that

t →∞β⊥ t′ if and only if t →∞N t′

Confluence and normalization. The theorem of confluence of the (un-
typed) λ-calculus extends to the infinitary λ-calculus:

Theorem 11 ([Cza15]). If t, t1 and t2 are three infinitary λ-terms such that
t →∞β⊥ t1 and t →∞β⊥ t2, then there exists t3 such that

t
∞
β⊥

��

∞
β⊥

  
t1

∞
β⊥ ��

t2

∞
β⊥��

t3

Infinitary λ-terms also normalize in some sense: there is a lambda-term
without redexes, but potentially containing the additional divergence symbol
⊥, to which they reduce. Note that this relation extends the Böhm reduction
for the finitary λ-calculus, as it precisely computes the Böhm trees of finite
λ-terms. More formally, considering that a β⊥-normal form is an infinitary
term t to which the rewriting relation →β⊥ can not be applied, we have:

Theorem 12 ([Cza15]). For every infinitary λ-term t, there exists a unique
infinitary λ-term tnf in β⊥-normal form such that t →∞β⊥ tnf .

By Theorem 10, we can compute this normal form using the coinductive
parallel head reduction →∞N .

4.3 Simply-typed infinitary terms

Proposition 5 enables us to consider higher-order recursion scheme as a par-
ticular kind of λY -terms, which in turn correspond to a subset of infinitary
λ-terms: they are terms admitting a finite representation, and a simple type.
In this section, we extend the simple type system of λ-calculus to infinitary
terms, and prove coinductively subject reduction, as an illustration of this
proof technique. We obtain the simple type system for infinitary λ-terms, both
in its additive and multiplicative presentations, by considering a coinductive
version of the systems of Figure 3.4 and of Figure 3.5. The use of coinduction
allows to build proofs of infinite depth, which in turn implies that the contexts
Γ occurring in derivations may contain infinitely many variables.

Note that there is an additional subtlety when considering the multiplicative
presentation of the system: the spirit of this formulation is to track explicitly
the introduction and usage of variables; for instance, the Weakening rule makes
explicit the introduction of a variable the term we type does not actually use.
When considering coinductive proofs, such variables may appear in the context
without having been introduced by an Axiom nor by a Weakening rule. This
point will not matter for our purpose in this current section. However, to restore
this purely multiplicative spirit, one may add an additional guard condition to
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coinductive proofs: for every variable occurring in a context, there should be
at finite depth an Axiom or Weakening rule introducing it2.

The type system enjoys subject reduction:

Proposition 7 (Subject reduction, infinitary version). Given two infinitary
λ-terms t and t′ such that t →∗β t′ or t →∞β t′, if there is a possibly infinite
context Γ such that Γ ` t : κ, then Γ ` t′ : κ.

To prove this result, we first define the linear substitution in a proof of an
occurrence of a variable x : κ with a term t1 : κ in Figure 4.2. Given an
enumeration of the occurrences of a variable x in a proof π of a sequent

Γ0 + Γ1 ` (λx. t0 ) t1 : κ′

(where context addition was defined on p. 66), we define its β-reduction core-
cursively by applying in a first step a linear substitution to each occurrence,
following the order provided by the enumeration of these occurrences. The
proof obtained is of the form

π′0
π1

Γ0 + Γ1, x : κ ` t′0 : κ′

Γ0 + Γ1 ` λx. t′0 : κ→ κ′ Γ1 ` t1 : κ

Γ0 + Γ1 ` (λx. t′0 ) t1 : κ′

Γ1 ` t1 : κ

π1π1

Γ1 ` t1 : κ

where by construction
t′0 = t0[x← t1]

so that x : κ appears in contexts of π′0, but is never introduced by an Axiom
rule. We therefore rewrite this proof to

π′′0

Γ0 + Γ1 ` t0[x← t1] : κ′

Γ1 ` t1 : κ

π1π1

Γ1 ` t1 : κ

2I would like to thank Pierre Vial for interesting discussions on this point.
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where π′′0 is obtained from π′0 by removing from the context the useless variable
x – recall that we only consider proofs in which each variable name corresponds
to a unique variable, thanks to α-renaming of variables. This resulting proof
is a typing proof of the sequent

Γ0 + Γ1 ` t0[x← t1] : κ′

typing the term obtained from (λx. t0 ) t1 by contracting its outermost redex.
The proof of the subject reduction property then follows from the (co)inductive

application of this proof rewriting procedure. If t →∗β t′, where Γ ` t : κ,
we suppose by induction that every sequence of length at most n of reductions
preserves typing, and consider a reduction sequence of length n+ 1:

t0 →β · · · tn →β tn+1

By induction hypothesis, we obtain a rewritten proof of typing of the sequent
Γ ` tn : κ, and an application of the proof rewriting procedure to the redex
contracted by the reduction tn →β tn+1 allows to conclude.

If t →∞β t′, with Γ ` t : κ, the proof is by coinduction. We suppose
that every reduction sequence preserves typing – implicitly, up to some ordinal
length α. We then consider a reduction sequence, of implicit length α+ 1:

t →β t1 →∞β tα

Since we have proved subject reduction for one step of β-reduction, and that
Γ ` t : κ, we obtain Γ ` t1 : κ. Since t1 →∞β tα is of length α, we can
apply it the coinductive hypothesis, and conclude that Γ ` tα : κ.

By application of the coinduction principle, subject reduction holds for
every coinductive rewriting sequence.

4.4 The higher-order model-checking problem, again

Proposition 5 enables us to consider higher-order recursion schemes as a par-
ticular kind of λY -terms, which in turn correspond to finitely presentable in-
finitary simply-typed λ-terms.

We may therefore compute their value trees no longer using the supremum
of the partial productions of all finite reductions, but directly using infinitary,
coinductive rewriting. Adapting the reduction →∞N to the particular setting of
productive recursion schemes, to which we may restrict thanks to the results
of §3.5, we define the inductive weak head rewriting relation →G,w, and the
coinductive rewriting relation →∞G in Figure 4.3. The relation is defined ac-
cording to a precise recursion scheme G, which is used to unfold the fixpoint
calls. From the previous sections, we obtain:

Proposition 8. The value tree 〈 G 〉 of a productive recursion scheme G is its
unique normal form for the coinductive rewriting relation →∞G .

Note that 〈 G 〉 can be obtained equivalently as the unique normal form
of t∞(G) for the coinductive rewriting relation →∞N . An advantage of this
presentation, compared to the traditional one recalled in §3.2, is that it al-
lows coinductive reasoning on rewriting. We believe that this would allow,
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(λx. s ) t →G,w s[x← t]
s →G,w s′

s t →G,w s′ t
F →G,w R(F )

t →∗G,w a t1 · · · tn ti →∞G t′i (∀i)

t →∞G a t′1 · · · t′n

Figure 4.3: Coinductive evaluation of productive higher-order recursion
schemes.

as discussed in §6.5, to rephrase the proof of the soundness-and-completeness
theorem presented in §6.3 in a purely coinductive setting, using coinductive
subject reduction – and expansion, which will hold in this new setting – to
relate properties of G with properties of 〈 G 〉. This would also allow a natural
extension of the theorem to infinitary λ-terms.

As a step towards such more expressive type systems, let us consider the
synchronization of the evaluation of a higher-order recursion scheme with the
execution of an alternating parity tree automaton over it. Indeed, we do not
need to fully evaluate a HORS to its value tree before running an APT over
it: every time the evaluation outputs a new head symbol, we may execute a
transition of the APT over it. This leads to the coinductive definition of the
relation →∞G,A, based on the earlier-defined relation →G,w, and on the set of
rules

t →∗G,w a t1 · · · tn ti : qi,j →∞G,A t′i : qi,j

t : q →∞G,A (a (t′1 : (1, q1,1)) · · · (t′1 : (1, q1,k1
)) · · · (t′n : (n, qn,1)) · · · (t′n : (n, qn,kn))) : q

for every conjunctive clause (recall p. 48)

ϕ =
∧

i∈{1,...,n}

∧
j∈{1,...,ki}

(i, qi,j)

of a transition δ(q, a) of the alternating parity automaton of interest. Note that
there is non-determinism hidden in the definition of this coinductive rewriting
relation, due to the choice of a conjunctive clause of the transition, but also
that we needed to parametrize the terms with a state. Non-determinism is a
hurdle to the definition of a unique notion of normal form for this reduction;
however, generalizing the deterministic case, we call a normal form of →∞G,A
an infinitary term which can not be further reduced.

Remark also that S being of ground type o by definition of G, coinductive
subject reduction implies that →∞G computes a normal form of ground type
again – that is, a Σ-labeled ranked tree. Therefore→∞G,A computes a Σ-labeled
unranked tree. We easily obtain the following proposition:

Proposition 9. There is a correspondence between the run-trees of A over
〈 G 〉 and the normal forms of →∞G,A.
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This proposition suggests to refine the simple typing of terms with state
annotations, to propagate in terms the behavior of alternating tree automata,
and to relate the typing of a term with the one of its normal form using subject
reduction and expansion. This will be the point of Part II.

Head reduction and Krivine machines. The reduction we presented is
strongly related to the evaluation by Krivine machine [Kri07], which imple-
ments weak-head reduction of (untyped) λ-terms. An alternate way to under-
stand→∞G,A would therefore be to introduce an infinitary version of the Krivine
machine, dealing with simply-typed coterms, and with a notion of internal state
storing the current state of the automaton we synchronize the machine with.
The machine computes the branches of an execution of the automaton over
the normal form of the term it evaluates: when a symbol is outputted by the
head reduction, the machine chooses non-deterministically a conjunctive clause
of the associated transition function, and then an external choice picks which
direction of the branch should be explored.

This idea is very similar to the one developed by Salvati and Walukiewicz
in [SW14]. Their approach differs by the fact that it is not formulated in a
coinductive framework, and by the fact that it considers non-deterministic tree
automata over binary trees — but this is not a restriction, as their expressive-
ness is the same as the one of alternating tree automata by Theorem 4.



Part II

Colored intersection types and
higher-order model-checking
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Chapter 5

Syntax and semantics of tree
automata

As emphasized by Proposition 9, the computation of an execution tree of an
alternating tree automaton A over the value tree of a productive higher-order
recursion scheme G can be performed using the non-deterministic rewriting
relation

t →∗G,w a t1 · · · tn ti : qi,j →∞G,A t′i : qi,j

t : q →∞G,A (a (t′1 : (1, q1,1)) · · · (t′1 : (1, q1,k1
)) · · · (t′n : (n, qn,1)) · · · (t′n : (n, qn,kn))) : q

which requires to remember the current state of the computation, in addition
to the term we rewrite. This suggests to refine the simple type of trees o
with states of the automaton of interest. These refinements indicate from
which states the normal form of a term of ground type is accepted, and this
construction is then lifted to higher-order types. In addition to this refinement,
we observe that some duplication – or erasure – of terms occurs during the
rewriting, a fact which is reminiscent of what happens in intersection type
systems. In such systems, we may give several refinements to a given simple
type, and have for instance

if : ∅ → (q0 ∧ q1)→ q0

whose application to arguments T1 and T2 leads to a typing proof

δ ∅ ` if : ∅ → (q0 ∧ q1)→ q0 ∅
App

∅ ` if T1 : (q0 ∧ q1)→ q0

...
Γ21 ` T2 : q0

...
Γ22 ` T2 : q1App

Γ21, Γ22 ` if T1 T2 : q0

(5.1)

in which the first argument T1 is not derived, while T2 is derived twice – just
as when an alternating tree automaton executes the transition function

δ(q0, if) = (2, q0) ∧ (2, q1)

on the tree if T1 T2. This connection of tree automata with type systems orig-
inates in Aehlig’s work on a finitary semantics for recursion schemes [Aeh06],
in which the interpretation of a HORS describes the acceptation of its value

103
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tree by a trivial tree automaton, that is, a Büchi tree automaton with trivial
acceptance condition – a class strictly weaker than APT. Kobayashi then gave
a type-theoretic presentation of Aehlig’s semantics in [Kob09b], which was ex-
tended to an intersection type system accounting for APT, and thus for all
MSO properties, by Kobayashi and Ong in [KO09].

The purpose of this thesis is to reinvestigate this line of work using the
clarifying prism of linear logic. As a preliminary step to the next chapters,
we explain in §5.1 how an intersection type system, differing from the one of
Kobayashi by its non-idempotency, can be used to type a term in a way which
reflects the behavior of a given alternating tree automaton over its normal
form. After recalling the relational semantics of linear logic in §5.2, we use a
bridge between them and non-idempotent intersection types, due to Bucciarelli
and Ehrhard [BE00, BE01] and carried on further by de Carvalho [dC09], to
restate in §5.3 this type-theoretic approach in the relational semantics. We
obtain that the interpretation of a term of simple type contains a given state if
and only if the tree it generates by normalization is accepted from this state by
the alternating automaton of interest. Using a result of extensional collapse by
Ehrhard, we give a similar theorem in the qualitative Scott semantics of linear
logic in §5.4.

5.1 Refining simply-typed λ-calculus with
non-idempotent intersection types

Refinement of simple types with intersection types. Given a finite set
of states Q, we define intersection types by the grammar

θ ::= q | τ → θ (q ∈ Q)
τ ::=

∧
i∈I θi (I finite) (5.2)

We usually keep implicit the parenthesis around the intersection operator. The
intersection operator we consider here is not idempotent: we do not have
σ ∧ σ = σ. As such, it may be understood as the representation of a list
of elements indexed by a family I, which may appear several times, and in
which the order is irrelevant. In other terms, these types can be represented
as multisets, as we explain more in details in §5.3 – and not as sets, in which
the elements do not have multiplicities. This differs from Kobayashi and Ong’s
approach, in which the intersection is idempotent, and corresponds to a set of
elements. We discuss idempotency in §5.4.

Another difference with intersection type systems considered in semantics,
notably for defining filter models, is that we do not allow a term to be typed
as q ∧ (q → q) for instance: the terms we consider are simply-typed, and our
intersection type system aims at refining this simple type. We therefore define
the proper refinement relation :: by the rules of Figure 5.1; this relation ensures
that all the types occurring in an intersection are of the same shape.

The intersection type system. We define contexts as finite sequences

Γ = x1 :
∧
i1∈I1

θ1,i1 :: κ1, . . . , xn :
∧
in∈In

θn,in :: κn
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q ∈ Q
q :: o

τ :: κ1 θ :: κ2

τ → θ :: κ1 → κ2

∀i ∈ I θi :: κ∧
i∈I �miθi :: κ

Figure 5.1: The proper refinement relation ::

of variables together with their simple type and an intersection type refining
this simple type. As earlier, we call the domain dom(Γ) of a context Γ the set
{x1, . . . , xn } of variable names occurring in it. We write

x :
∧
i∈I

θi :: κ ∈ Γ

when x occurs in Γ with these simple and intersection types.
The sum Γ1 + Γ2 of two contexts is the context of domain dom(Γ1) ∪

dom(Γ2), such that for every x ∈ dom(Γ1) ∪ dom(Γ2):

• if x ∈ dom(Γ1) but x /∈ dom(Γ2), x occurs with the same intersection
and simple type in Γ1 and in Γ1 + Γ2,

• if x ∈ dom(Γ2) but x /∈ dom(Γ1), x occurs with the same intersection
and simple type in Γ2 and in Γ1 + Γ2,

• if x ∈ dom(Γ1) ∩ dom(Γ2), with x :
∧
i∈I1 θi :: κ1 ∈ Γ1 and x :∧

i∈I2 θi :: κ2 ∈ Γ2

– if I1 ∩ I2 6= ∅, or if κ1 6= κ2, the operation is undefined,

– else we set κ = κ1 = κ2, and

x :
∧

i∈I1]I2

θi :: κ ∈ Γ1 + Γ2

When Γ1 + Γ2 is well-defined, we say that these contexts are compatible.

Note that compatibility is intrinsically related to the non-idempotency of
the type system, which itself corresponds to the notion of quantitativity : there
should be precisely one type in the context for each occurrence of an Axiom
rule introducing a variable in the term we type.

Considering a variable

x :
∧
i∈I

θi :: κ ∈ Γ

the subtraction of x : θj from the context Γ, denoted Γ − (x : θj), is the
context where all variables other than x keep the same type as in Γ, while x
receives type

x :
∧

i∈I\{j}

θi :: κ
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Axiom (x ∈ V ∪ N )
x :

∧
{i} θi :: κ ` x : θi :: κ

{ (i, qij) | 1 ≤ i ≤ ar(a), 1 ≤ j ≤ ki} satisfies δA(q, a)
δ (a ∈ Σ)

∅ ` a :
∧k1

j=1 q1j → . . . →
∧kn
j=1 qnj → q :: on → o

Γ ` t :
(∧

i∈I θi
)
→ θ′ :: κ→ κ′ Γi ` u : θi :: κ for every i ∈ I

App
Γ +

∑
i∈I Γi ` t u : θ′ :: κ′

Γ, x :
∧
i∈I θi :: κ ` t : θ′ :: κ′

λ
Γ ` λx . t :

(∧
i∈I θi

)
→ θ′ :: κ→ κ′

Figure 5.2: The non-idempotent intersection type system H(A).

We extend naturally this operation to intersections: Γ−(x :
∧
j∈J θj) contains

x :
∧
i∈I\J θi :: κ, and we extend similarly this operation to the subtraction

of contexts.

Given an alternating tree automaton A, the type system H(A) is defined
inductively in Figure 5.2. The intersection types denoted with θ are required
to match the shape they have in (5.2). In the Axiom rule, the context contains
only x, with a unique type θi in the intersection. The index i can be chosen
freely. In the δ rule, we use the notion of set satisfying a transition function
from p. 47. Notice that the Application rule is of finite, yet variable width,
since it depends on the size of the intersection type the argument is required
to have; and that the use of the sum operator on contexts implicitly assumes
that they are all compatible – a way to ensure compatibility being to introduce
a unique index i in the intersection operator at each Axiom leaf.

Notice that the typing proof (5.1) becomes an example of derivation in this
type system if we understand Γ21, Γ22 as Γ21 + Γ22 in its conclusion.

Typings and automata executions. Consider a simply-typed λ-term t of
ground type o. By subject reduction (Proposition 3), its normal form tnf is
of type o as well. Since a normal form does not contain any redex and that
tnf is of ground type, it can not contain any λ. Suppose that t is closed, then
tnf does not contain variables, and is only an application of symbols of the
signature of constants Σ – that is, a Σ-labeled tree, moreover ranked due to
the simple typing constraints.

Now, if we consider a proof of typing of tnf = a t1 · · · tar(a) in the system
H(A), its typical shape is as in Figure 5.3, where each πij is again of the same
shape. Note that the contexts are empty since tnf is closed. Using the usual
correspondence between trees and terms over a same signature, we easily obtain
that:
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Proposition 10. Given an alternating automaton A and a closed finite λ-term
tnf of simple type o and in normal form, there is a correspondence between the
executions of A from the initial state q0 over tnf and the typings of

∅ ` tnf : q0 :: o

in the intersection type system H(A).

Since we may now capture acceptation by a given alternating tree automa-
ton as a type-theoretic property, it is relevant to study the preservation of the
intersection types admitted by a term along reduction: this property would
allow to deduce directly from a term normalizing to a tree the acceptation of
this tree by an alternating automaton. The key properties are therefore subject
reduction and subject expansion, which we prove right after defining a notion
of rewriting on derivation trees.

Definition 31. • Consider two simply-typed λ-terms (λx. t) u and t[x←
u], and a proof π of conclusion Γ ` (λx. t) u : τ :: κ′. We define the
proof π′ of conclusion Γ ` t[x ← u] : τ :: κ′ in Figure 5.4, and we
say that (λx. t) u →β t[x ← u] lifts to π →β π′ at the level of typing
derivations.

• Let t and t′ be two simply-typed terms such that t →β t
′, and let π be

a proof of conclusion Γ ` t : τ :: κ′. We extend the notion of proof
rewriting by defining the proof π′ of conclusion Γ ` t′ : τ :: κ′ obtained
by applying the transformation of Figure 5.4 to the subproof of π whose
conclusion is the redex contracted by t→β t

′, leaving the remaining proof
context unchanged, and we say as well in this more general situation that
t→β t

′ lifts to π →β π
′ at the level of typing derivations.

By noticing that the lifting to the level of typing derivations of t →β t′

preserves their conclusion, and by applying inductively the process, we obtain:

Proposition 11 (Subject reduction). Let t and t′ be simply-typed λ-terms such
that t→∗β t′ and that Γ ` t : θ :: κ. Then Γ ` t′ : θ :: κ.

This allows to conclude that if t : q0 :: o in H(A), then its normal form is
accepted by A from the initial state q0. To obtain an equivalence, we need:

Proposition 12 (Subject expansion). Let t and t′ be simply-typed λ-terms
such that t→∗β t′ and that Γ ` t′ : θ :: κ. Then Γ ` t : θ :: κ.

This property follows from the definition of the proof rewriting relation
→−1
β in Figure 5.5, applied inductively on the redexes contracted by t →∗β t′.

The essential difference between subject reduction and subject expansion is
that we need in the latter to reconstruct the context for πt. Thanks to the
quantitativity of the system, this is easily done by context subtraction.

A consequence of these two results and of Proposition 10 is the following
“preliminary” higher-order model-checking theorem, where we use the notion
of acceptation from a state of p. 50:

Theorem 13. Given a term t of simple type o, there is a proof in H(A) of the
sequent

∅ ` t : q0 :: o
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if and only if the tree generated by the normalization of t is accepted from q0

by the alternating tree automaton A.

Thanks to this theorem, we no longer need to reduce a term to determine
whether the tree it generates is accepted by a given tree automaton: we just
need to type it with the initial state of the automaton.

5.2 The relational model of linear logic

As we explain in §5.3, the non-idempotency of the intersection operator con-
nects it to the interpretation of the λ-calculus in the relational semantics of
linear logic. Before that, we find useful to briefly recall the definition of the
relational model of linear logic, and of a Seely category, which is one of the
possible axiomatizations of a model of linear logic, see [Mel09] for details.

The category Rel is defined as the category with finite or countable sets
as objects, and with binary relations between A and B as morphisms A→ B.
The category Rel is symmetric monoidal closed, with tensor product defined
as (set-theoretic) cartesian product, and tensorial unit defined as singleton:

A⊗B = A×B 1 = {?}.

In other words, the notion of tensor in the category of relations meets the one of
cartesian product of sets. As such, its unit is (up to isomorphism) the singleton
set 1 = {?}. Its internal hom (also called linear implication) X ( Y simply
defined as X ⊗ Y , the evaluation morphism being

ev = {(((a, b), a), b) | (a, b) ∈ X × Y } ∈ Rel((X ( Y )×X,Y )

Since the object ⊥ = 1 = {?} is dualizing, the category Rel is moreover
∗-autonomous. The category Rel has also finite products defined as

A&B = {(1, a) | a ∈ A} ∪ {(2, b) | b ∈ B}

with the empty set as terminal object >. As in any category with finite prod-
ucts, there is a diagonal morphism ∆A : A→ A&A for every object A, defined
as

∆A = {(a, (i, a)) | i ∈ {1, 2} and a ∈ A}
Note that the category Rel has finite sums as well, since the negation A⊥ =

A ( ⊥ of any object A is isomorphic to the object A itself. Note that this
degeneracy can be addressed: Rel can be turned into a model where dual
connectives are no longer isomorphic, see [BE01] for details. All this makes
Rel a model of multiplicative additive linear logic. In order to establish that
it defines a model of propositional linear logic, we find convenient to check
that it satisfies the axioms of a Seely category, as originally axiomatized by
Seely [See89] and then revisited by Bierman [Bie95], see the survey [Mel09] for
details.

Definition 32 (Seely category). A Seely category is defined as a symmetric
monoidal closed category (L ,⊗, 1) with binary products A & B, a terminal
object >, and:
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1. a comonad (!,dig,der),

2. two natural isomorphisms

m2
A,B : !A⊗!B ∼= !(A&B) m0 : 1 ∼= !>

making
(!,m) : (L ,&,>) −→ (L ,⊗, 1)

a symmetric monoidal functor.

One also asks that the coherence diagram

!A⊗!B
m //

digA⊗digB

��

!(A&B)

digA&B
��

!!(A&B)

!〈!π1,!π2〉
��

!!A⊗!!B
m // !(!A&!B)

(5.3)

commutes in the category L for all objects A and B, and that the four following
diagrams expressing the fact that the functor (!,m) is symmetric monoidal:

(!A⊗!B)⊗!C
α //

m⊗!C

��

!A⊗ (!B⊗!C)

!A⊗m
��

!(A&B)⊗!C

m

��

!A⊗!(B & C)

m

��
!((A&B) & C)

!α // !(A& (B & C))

(5.4)

!A⊗ 1
ρ //

!A⊗m
��

!A

!A⊗!> m // !(A&>)

!ρ

OO 1⊗!B
λ //

m⊗!B

��

!B

!>⊗!B
m // !(>&B)

!λ

OO

(5.5)

!A⊗!B
γ //

m

��

!B⊗!A

m

��
!(A&B)

!γ // !(B &A)

(5.6)

commute in the category L for all objects A,B and C.

To define Rel as a Seely category, recall that a finite multiset over a set A is
a (set-theoretic) function w : A→ N with finite support, where the support of
w is the set of elements of A whose image is not equal to 0. Alternatively, it can
be seen as a finite sequence [a1, · · · , an] of elements of A up to commutation
of elements (it is in fact the abelianized of the sequence). The addition of two
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finite multisets m1 and m2 can equivalently be seen as their pointwise addition
as functions, or as the finite result of the concatenation of both sequences.
Denote Mfin(A) the set of finite multisets of elements of A. The functor
! : Rel→ Rel is defined as

!A = Mfin(A)
! f = {([a1, · · · , an], [b1, · · · , bn]) | ∀i, (ai, bi) ∈ f}

The comultiplication and counit of the comonad are defined as the digging and
dereliction morphisms below:

digA = {(w1 + · · ·+ wk, [w1, · · · , wk]) | ∀i, wi ∈ !A} ∈ Rel(!A, !!A)
derA = {([a], a) | a ∈ A} ∈ Rel(!A, A)

In order to define a Seely category, one also needs the family of isomorphisms

m0 : 1 −→ !>
m2
A,B : !A⊗ !B −→ ! (A&B )

which are defined as m0 = {(?, [])} and

m2
A,B = {(([a1, · · · , am], [b1, · · · , bn]), [(1, a1), · · · , (1, am), (2, b1), · · · , (2, bn)])}

One then carefully checks that the coherence diagrams expected of a Seely
category commute. From this follows that

Proposition 13. The category Rel together with the finite multiset interpreta-
tion of the exponential modality ! defines a model of propositional linear logic.

5.3 Non-idempotent intersection types and the
relational semantics of linear logic

The relational semantics of linear logic gives birth to a denotational model of
the λ-calculus by the Kleisli construction, which is in a sense the semantic
counterpart to the linear decomposition of the intuitionnistic arrow

A ⇒ B = !A ( B

This decomposition is a fundamental property of linear logic, and means that
every intuitionnistic arrow building a formula A ⇒ B can be understood as a
two-step operation

• which performs in a first time duplications or erasures of its argument A:
this is the effect of the modality ! on the formula A,

• followed by a linear use of each element of !A: each copy made in the
previous step is used only once in the program of type !A ( B we
consider.
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In the relational semantics, the Kleisli construction accordingly leads to the
interpretation of each term of simple type κ → κ′ as a subset of the interpre-
tation

[[κ→ κ′]] = Mfin([[κ]])× [[κ′]]

of its type, in which the duplication step is interpreted as the finite multiset
constructionMfin.

By interpreting the ground type o as [[o]] = Q, we obtain for instance that
the binary symbol

if :: o→ o→ o

is interpreted as a subset

[[if]] ⊆ Mfin(Q) × Mfin(Q) × Q

The idea is that every element

([q1, . . . , qn], [q′1, . . . , q
′
m], q′′) ∈ [[if]]

describes the fact that the application of if to a term T1 accepted from each
state qi and to another term T2 accepted from each q′j gives a term if T1 T2

accepted from q′′. The alternating transition

δ(q0, if) = (2, q0) ∧ (2, q1)

can accordingly be reflected in the semantics by setting that

([ ], [q0, q1], q0) ∈ [[if]]

where [ ] is the empty multiset. More generally, given an alternating automaton
A without parity condition, we consider an interpretation of λ-terms over a
signature of constants Σ such that, for every constant a of arity n of Σ,

[[a]] =
⋃
{ ([q11, . . . , q1k1

], . . . , [qn1, . . . , qnkn ], q) | { (i, qij) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a) }

Recall that the non-idempotent type system H(A) introduced in §5.1 uses
the rule δ to provide intersection types to the constants of Σ in a very similar
way: the only two differences between

([q11, . . . , q1k1 ], . . . , [qn1, . . . , qnkn ], q) ∈ [[a]]

and

a :

k1∧
j=1

q1j → . . . →
kn∧
j=1

qnj → q

lie in the fact that we use a multiset notation in the first case, and a non-
idempotent intersection in the second, and in the fact that a tuple is used in
the semantics to represent a succession of arrows in types.

This observation extends to a more general connection between the deno-
tations of λ-terms in the relational semantics and associated non-idempotent
intersection type systems. In particular, the interpretation of terms we just
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defined in the relational semantics maps a closed term to a set isomorphic to
the set of the non-idempotent intersection types it admits in the system H(A):

[[t]] ∼= { θ | ∅ ` t : θ :: κ }

where κ is the simple type of t. A similar result holds for terms with free
variables, by reducing to the case of closed terms by λ-abstraction.

This connection between the relational model of linear logic and non-idempotent
intersection types originates in Bucciarelli and Ehrhard’s work on indexed lin-
ear logic [BE00, BE01], in which the exponential modality is constrained so
as to reflect the denotational interpretation of terms. Indeed, the relational
semantics contains more than just interpretations of λ-terms: for instance,
suppose that ([q0], [q1], q0) ∈ [[a]], and that

([q0, q1], q0) ∈ [[λx.a x x]] ⊆ [[o→ o]] (5.7)

is an element of the relational semantics of λx.a x x. From two different
terms t0 and t1 such that q0 ∈ [[t0]] and q1 ∈ [[t1]], we can form a multiset
[q0, q1] and compose it with (5.7), even if this does not correspond to the fact
that the substitution of x in the λ-calculus shall be performed twice with the
same term. With this respect, the relational model corresponds to a wider
calculus named λ-calculus with resources, defined for instance in [Ehr14]. The
indexation incorporated to the exponential modality in indexed linear logic is
a way to ensure that the denotations used to build a multiset come from the
same term - or, equivalently, from a proof of the same structure. The idea can
be understood from the rule for Application in intersection type systems: in

Γ ` t :
(∧

i∈I θi
)
→ θ′ :: κ→ κ′ Γi ` u : θi :: κ for every i ∈ I

Γ +
∑
i∈I Γi ` t u : θ′ :: κ′

we open a new proof typing u for each type it should have. In indexed linear
logic, the idea is similarly to superpose the family of proofs of typing for u
to a unique proof indexed by the set I. The connection between relational
semantics and non-idempotent intersection types, inspired by indexed linear
logic, was carried on further by de Carvalho [dC09] to study the complexity
of reduction of λ-terms. The relation between the intersection type system of
Kobayashi for higher-order model-checking, the type system H(A) and indexed
linear logic is detailed by Grellois and Melliès in [GM15b].

Now that we explained how the interpretation of λ-terms in the relational
model of linear logic precisely corresponds to the computation of its set of inter-
section types in H(A), we find useful to point out that a semantic counterpart
to Theorem 13 is provided directly by the fact that Rel is denotational :

if t →β t′ , then [[t]] = [[t′]]

This stability of the semantics under β-reduction is a counterpart to the type-
theoretic properties of subject reduction and expansion. We therefore obtain:

Theorem 14. Given a closed term t of simple type o, we have that

q0 ∈ [[t]]

in the relational semantics of linear logic if and only if the tree generated by
the normalization of t is accepted from q0 by the alternating tree automaton A.
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5.4 Idempotent types and extensional collapses

Non-idempotent intersection types have several advantages:

• they connect naturally to the interpretation of λ-terms in the relational
semantics of linear logic, that are in a sense its most canonical semantics,

• this connection does not require subtyping,

• and it is particularly clear to prove subject expansion and reduction, as
it is just a linear manipulation of subproofs, since each occurrence of a
variable corresponds precisely to such a subproof.

However, from a more practical point of view, to design algorithms as well
as to prove decidability of higher-order model-checking problems, the precise
account of the multiplicity of uses of a type in an intersection is a hurdle. The
set of intersection types refining a given simple type is indeed infinite. An
alternative is to switch to idempotent intersection types, in which the equation

σ ∧ σ = σ

holds. More generally, intersections are considered modulo surjective reindex-
ing: for every surjection f : J →→ I,∧

j∈J
σf(j) =

∧
i∈I

σi (5.8)

This amounts to considering the intersection operator as the representation of
a set of intersection types:

x :
∧
i∈I

θi :: κ ∼= {x : θi :: κ | i ∈ I } (5.9)

instead of the multiset-based representation related to non-idempotent types.
In the same spirit, contexts correspond to sets obtained as unions of such sets
of refined typings. From this definition of contexts of idempotent types as sets
follows immediately the definition of the union

Γ1 ∪ Γ2

of two contexts, as the union of the sets they represent. Notably, if x occurs in
Γ with the idempotent intersection type

∧
i∈I θi, and in Γ′ with the intersection

type
∧
j∈J θ′j refining the same simple type, then it appears in Γ∪Γ′ with the

intersection type corresponding to the set

{x : θi :: κ | i ∈ I } ∪
{
x : θ′j :: κ | j ∈ J

}
modulo the identification (5.9). The notion of belonging to a context is also
derived from this set-theoretic interpretation: we say that x : θ ∈ Γ if and only
if x appears in Γ with the idempotent intersection type

∧
i∈I θi and that there

exists i ∈ I such that θ = θi. The inclusion of contexts is defined accordingly.
We sometimes forget the simple type in contexts when it makes the reading
clearer, or the intersection operator when it is taken over a singleton set: in
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this case, we may write x : θ :: κ for x :
∧
{1} θ :: κ.

As pointed out by Ehrhard in [Ehr12a] and by Terui in [Ter12], idempotent
intersection types are a type-theoretic counterpart to the interpretation of the
λ-calculus in the Scott model of linear logic, if we consider a type system with
subtyping. As in the non-idempotent case, the set of intersection types a term
admits in the associated idempotent type system is isomorphic to the set of
elements appearing in the semantics of the term. We recall the Scott model of
linear logic, before connecting it to the relational semantics. We do not make
the idempotent intersection type system of [Ter12] explicit here, but we will
present it extended with a coloring modality in §10.2.

5.4.1 The Scott model of linear logic

We present here the finitary Scott semantics of linear logic, where formulas
are interpreted as partial orders. The resulting semantics of linear logic is
qualitative in the technical sense that its exponential modality ! is interpreted
using the finite powerset construction, which transports finite sets into finite
sets, in contrast to the finite multiset construction used in the traditional and
quantitative relational semantics. The terminology of Scott semantics comes
from the fact that in the derived semantics of the simply-typed λ-calculus, every
type is interpreted as a prime algebraic complete lattice, and every simply-
typed λ-term as a Scott-continuous function.

However, we find convenient to develop here the formulation of this model
of linear logic due to Winskel [Win98], and obtained from the former by Stone
duality, see for example [Ter12]. So, let ScottL denote the category with
preorders A = (A, ≤A ) as objects and downward-closed binary relations R ⊆
A × B as morphisms (A, ≤A ) → (B, ≤B ). Here, by a downward-closed
relation, we mean a binary relation R such that for all a, a′ ∈ A and b, b′ ∈ B,
one has :

(a, b) ∈ R and a ≤A a′ and b′ ≤B b ⇒ ( a′, b′ ) ∈ R.

The binary relation R is thus downward closed in the partial order (A,≤A)
op×

(B,≤B) interpreting the formula (A,≤A) ( (B,≤B) in the Scott semantics.
The intuition guiding this property is that if a binary relation R interpreting
a proof of linear logic can produce an output b from an input a, then the same
binary relation can also produce a less informative output b′ from a more infor-
mative input a′. It is well-known in the literature on linear logic that this “sat-
uration property” is essential in order to obtain a relational semantics of linear
logic with a qualitative (that is, based on finite sets instead of finite multisets)
interpretation of the exponential modality. This remark is generally attributed
to Ehrhard, see [Mel09] for details. When considered type-theoretically, this
downward closure corresponds to the subtyping rule, see [Ter12] for details. The
composition in ScottL is relational, since relational composition preserves the
property of being downward-closed. The identity morphism over (A, ≤A ) is

idA = { ( a′, a ) | a ≤A a′ }

ScottL is a compact closed category with products, with
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(A, ≤A ) ⊗ (B, ≤B ) = (A×B, ≤A × ≤B ) 1 = ( {?}, = )
(A, ≤A ) & (B, ≤B ) = (A ]B, ≤A ] ≤B ) > = ( ∅, ∅ )

(A, ≤A )⊥ = (A, ≥A )

The exponential modality

! : A 7→ !A : ScottL −→ ScottL

is then defined by associating to the ordered set (A,≤A) the set Pfin(A) of finite
subsets of A, where two finite subsets u and v are ordered in the following way:

u ≤!A v ⇐⇒ ∀a ∈ u, ∃b ∈ v, a ≤A b.

The endofunctor ! transports every morphismR : A→ B of the category ScottL
to the following morphism:

!R = { (u, v) ∈ !A× !B | ∀ b ∈ v ∃ a ∈ u (a, b) ∈ R } : !A→ !B

The endofunctor ! is in fact a comonad and defines a Seely category, so that:

Proposition 14. The category ScottL together with the finite powerset inter-
pretation of the exponential modality ! defines a model of propositional linear
logic.

5.4.2 Extensional collapse and idempotency

The Scott model of linear logic is deeply related to its relational model, as
Ehrhard proved that the former is the extensional collapse of the latter [Ehr12b].
In a sense, quotienting the relational model by extensionality makes the precise
count of multiplicities disappear, as this is an intrinsically internal property of
the term: a context can not observe how many times a program uses the argu-
ments it provides it (of course, the contexts considered here are without effects).
If we focus on the models of the λ-calculus obtained from these two models of
linear logic, we can translate this result to an equivalent type-theoretic setting,
which is explicited by Ehrhard in [Ehr12a] (essentially in his Theorem 18), and
obtain a correspondence between the non-idempotent type system H(A) and
its idempotent counterpart, enriched with subtyping. The general picture we
obtain is:

Rel!

Ehrhard

��

Bucciarelli−Ehrhard
de Carvalho

// Non-idempotent types

Ehrhard

��

oo

ScottL!
Ehrhard

Terui
// Idempotent typesoo

where the categories Rel! and ScottL! are the models of the λ-calculus induced
by the relational and Scott models of linear logic.

A consequence of Ehrhard’s extensional collapse result is the following coun-
terpart to Theorem 14:
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Theorem 15. Given a term t of simple type o, we have that

q0 ∈ [[t]]

in the Scott semantics of linear logic if and only if the tree generated by the
normalization of t is accepted from q0 by the alternating tree automaton A.

This relation between a quantitative and a qualitative semantics of linear
logic will serve as a guide towards an extension of these theorems with recursion
and an account for the parity condition of APT. We will use the conceptual
clarity of the relational semantics to investigate in a first time the necessary
extensions of the semantics to capture the whole higher-order model-checking
problem, and then adapt them to the finitary Scott semantics to obtain a
decidability result.





Chapter 6

A type system for higher-order
model-checking

In order to study the higher-order model-checking problems of §3.4, we need
to extend the constructions of Chapter 5 with two new ingredients:

• recursion, in order to handle higher-order recursion schemes,

• colors, in order to reflect the parity condition of alternating parity au-
tomata.

Our starting point is the idempotent intersection type system introduced by
Kobayashi and Ong in [KO09], which can be understood as an extension of the
idempotent intersection type system of Chapter 5 with coloring annotations.
Given a HORS G and an APT A, a parity game Adamic(G,A) is defined, and
handles at the same time the recursion of the recursion scheme G and the
parity condition of the tree automaton A. Kobayashi and Ong prove in [KO]
a soundness-and-completeness theorem which states that A accepts 〈 G 〉 if and
only if Eve has a winning strategy in Adamic(G,A).

In this chapter, we start by recalling their approach in §6.1, and by con-
necting it further to proof theory in §6.2. The original type system formulated
by Kobayashi and Ong has a treatment of colors which is a bit ankward from
a logical and semantic point of view. For that reason, motivated by the desire
to extend the semantic constructions of Chapter 5 to include parities, we alter
their coloring policy, and obtain in §6.3 a type system in which this coloring
operation defines a modal operator, akin to a S4 modality. Our reformulation,
in spite of its similarity with the original type system, is not at all equivalent
to it. The theorem of soundness-and-completeness for this alternative type
system, which relates winning typing derivations for G with respect to an APT
A with winning executions of A over 〈 G 〉, is stated in §6.4. We give an outline
of the proof – to which Chapter 7 and Chapter 8 are devoted – in §6.5. We
also formulate important remarks about the consequences of this proof, and
discuss some potential extensions. To conclude the chapter, we extend in §6.6
the colored intersection type system we designed with a general weakening rule,
which was absent from Kobayashi and Ong’s original type system and which
will be necessary to establish the correspondence with the finitary semantics
of linear logic in Chapter 10.

121
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6.1 The Kobayashi-Ong type system

After designing in [Kob09b] a type-theoretic approach to alternating tree au-
tomata based on idempotent intersection types, Kobayashi carried on and gen-
eralized his approach with Ong [KO09] to the larger class of alternating parity
automata. The basic idea of their work is to incorporate coloring annotations
in the intersection types, in order to reflect the parity conditions of the tree
automata. Suppose for instance that a binary terminal a ∈ Σ induces a tran-
sition δ(q, a) = (1, q1) ∧ (2, q2) in an alternating parity tree automaton with
coloring function Ω : Q→ N. In that case, the terminal a is assigned in [KO09]
the intersection type

a : (q1,m1)→ (q2,m2)→ q (6.1)

where m1 = max(Ω(q1),Ω(q)) and m2 = max(Ω(q2),Ω(q)) are colors indi-
cating to the type system the colors of the states q, q1, q2 of the parity tree
automaton.

In the case of an alternating automaton without parity condition described
in the previous chapter, recall that a typing derivation of the value tree 〈 G 〉 of
the recursion scheme G is isomorphic to a run-tree of A over 〈 G 〉. The idea is
to extend this situation with coloring information. Consider a partial run-tree
with two holes

T

[ ] [ ]

Both paths leading from the root to a hole are labeled with elements of the
signature Σ, and with states of the automaton describing the use of the transi-
tion function in the run. Moreover, each of these states has a color. So, denote
by m1 (resp. m2) the maximal color encountered on the path leading to the
first (resp. second) hole. In the intersection type system, this partial run tree
corresponds to a derivation tree of a term λx. t, in which the variable x occurs
twice, and whose intersection types τ → θ refine the kind o → o. The idea
underlying Kobayashi and Ong’s colored approach is to incorporate the max-
imal colors m1 and m2 seen along the path as annotations in the intersection
types. Accordingly, the term λx. t corresponding to the partial run-tree de-
picted above will admit the colored intersection type (m1, θ1) ∧ (m2, θ2)→ θ.
This idea is then lifted to any order.

In this section, we recall the original type system of Kobayashi and Ong,
before simplifying its coloring policy in the next section – a simplification which
reveals themodal nature of colors (or priorities) in higher-order model-checking.
In particular, we find clarifying to write �m θ instead of (θ,m) as originally
done in [KO09]. So, given a set of states Q and a coloring function Ω : Q→ N,
we define the set of colors

Col = {Ω(q) | q ∈ Q }
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which contains the colors used by Ω. The intersection types are then generated
by the grammar

θ ::= q | τ → θ (q ∈ Q)
τ ::=

∧
i∈I �mi θi (I finite, mi ∈ Col)

where the intersection operator is idempotent, as defined in §5.4. This implies
in particular the expected idempotency equation

σ ∧ σ = σ.

The refinement relation between intersection types and kinds is defined by the
inductive rules below:

q ∈ Q
q :: o

τ :: κ1 θ :: κ2

τ → θ :: κ1 → κ2

∀i ∈ I θi :: κ∧
i∈I �miθi :: κ

Recall that contexts correspond to sets of variables, where each variable comes
together with a simple type and a set of intersection types refining this simple
type. The operation of union of contexts is defined in the obvious way, extend-
ing the non-colored case of §5.4: if x appears with the set of intersection types

{�c1 θ1, . . . , �cn θn}

(
denoted as

n∧
i=1

�ci θi

)

in Γ and with the set of intersection types

{
�c′1 θ

′
1, . . . , �c′m θ

′
m

} denoted as
m∧
j=1

�c′j θ
′
j


in Γ′, it appears in Γ ∪ Γ′ with the set of intersection types{

�c1 θ1, . . . , �cn θn, �c′1 θ
′
1, . . . , �c′m θ

′
m

}
Note that this set has at most n+m elements, but may have a smaller number
of elements if an intersection type occurs with the same color in both contexts.
The color modality acts on intersection types and contexts in the following way:

�m
(∧

i∈I �mi θi
)

=
∧
i∈I �max(m,mi) θi �m (x : τ , Γ ) = x : �m τ , �m Γ

An important aspect of Kobayashi and Ong’s construction is that every
intersection type should be assigned a color. So, given a coloring function
Ω : Q → N on the states of the automaton A, an intersection type τ → σ
has color:

Ω(τ → σ) = Ω(σ) (6.2)

This means that every intersection type inherits the color of its output. As
we will see, one benefit of our modal approach to higher-order model-checking
is that we can avoid that slightly arbitrary definition, to replace it by a more
careful treatment of colors. The original type system of Kobayashi and Ong
is recast in Figure 6.1. We find useful to emphasize the fact that the rule λ
allows a restricted form of weakening : since the intersection types we consider
are idempotent, contexts are sets containing sets of intersection types refining



124
CHAPTER 6. A TYPE SYSTEM FOR HIGHER-ORDER

MODEL-CHECKING

Axiom (x ∈ V ∪ N )
x :

∧
{?} �Ω(θ) θ :: κ ` x : θ :: κ

{ (i, qij) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ for a ∈ Σ and mij = max(Ω(qij),Ω(q))

∅ ` a :
∧k1
j=1 �m1j q1j → . . . →

∧kn
j=1 �mnj qnj → q :: on → o

Γ ` t : (�m1 θ1 ∧ · · · ∧�mk θk)→ θ :: κ→ κ′ Γ1 ` u : θ1 :: κ · · · Γk ` u : θk :: κ
App

Γ ∪ �m1Γ1 ∪ . . . ∪ �mkΓk ` t u : θ :: κ′

Γ , x :
∧
i∈I �mi θi :: κ ` t : θ :: κ′ I ⊆ J

λ (x ∈ V)
Γ ` λx . t :

(∧
j∈J �mj θj

)
→ θ :: κ→ κ′

Figure 6.1: The Kobayashi-Ong type system KO(A) associated to the alternating parity tree automaton A

the simple type of a variable. In particular, a variable with an empty set of
intersection types is always considered by Kobayashi and Ong as appearing in
a context, and taking I = ∅ in the rule λ allows to apply weakening – but
only on variables which are captured by an abstraction. The interested reader
will see in §6.6 how to extend the modal variant of this system with general
weakening.

The resulting intersection type system [KO09] enables one to type the
rewriting rules of a higher-order recursion scheme

Γ ` R(F ) : θ :: κ(F ) (6.3)

where the non-terminals occurring in the λ-term R(F ) appear as variables
in the context Γ of the typing judgment. Note that every rule of a recursion
scheme admits finitely many colored intersection types (6.3), where the context
consists of intersection types refining the simple types of the non-terminals
occurring in R(F ). In a context Γ, a non-terminal G typically occurs as

G :
∧
i∈I

�mi θi :: κ(G) (6.4)

Recursion as a parity game. In order to account for recursion, Kobayashi
and Ong introduce the finite parity game Adamic(G,A) in which Adam incre-
mentally tries to disprove Eve’s typing by picking the appropriate non-terminal
to unfold.

More specifically, Eve’s vertices correspond to colored typings for non-
terminals, while Adam’s vertices are typing contexts. There is an edge (poten-
tially played by Eve) from a typing F : �m θ :: κ to a context Γ if and only
the sequent

Γ ` R(F ) : θ :: κ(F ) (6.5)

is provable in the colored type system KO(A), and there is an edge (potentially
played by Adam) from a context Γ to a typing G : �m θ :: κ if and only
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if G : �m θ :: κ is an element of the context Γ. Note that the resulting
game is finite, thanks to the idempotency of the intersection operator. Vertices
F : �m θ :: κ receive color m; other vertices receive the neutral color 0.

A play is winning for Adam if and only if it ends on a node F : �m θ :: κ
from which Eve has no move - that is, if she made a typing assumption she can
not prove - or if the play is infinite and the maximal color played infinitely often
by Adam is odd. Here, by the color played by Adam at any point of the game,
we simply mean the color of the non-terminal picked by Adam. Therefore, Eve
has a winning strategy in this game if and only if she can ensure the existence
of a winning sequence of typings along every possible branch of reductions in
the scheme. This leads to the main result by Kobayashi and Ong, which may
be seen as some kind of soundness-and-completeness theorem:

Theorem 16 ([KO09]). Given a productive higher-order recursion scheme G
and an alternating parity tree automaton A, Eve has a winning strategy in the
parity game Adamic(G,A) iff A has a winning run-tree over 〈 G 〉.

Thanks to the positional determinacy of parity games (Theorem 5), an
immediate consequence of this theorem is the decidability of the local higher-
order model-checking problem:

Corollary 1 (Decidability of the local HOMC problem). Given an alternating
parity automaton A and a higher-order recursion scheme G, it is decidable
whether A has a winning execution over 〈 G 〉.

In §6.3, we show how the coloring policy of the type system KO(A) under-
lying the parity game Adamic(G,A) can be modified in a way which reveals
the modal nature of the coloration box �. Besides the questionable equation
(6.2) already mentioned, the fundamental obstruction to interpret the original
type system by Kobayashi and Ong as a modal proof system is the pair of
Axiom and δ rules, which do not respect the basic principles of a modal logic
like S4. In particular, the original intersection type (6.1) of the Kobayashi-Ong
intersection type system

a : (q1,m1)→ (q2,m2)→ q

does not carry any clear modal meaning since the coloring annotations mi =
max(Ω(q),Ω(qi)) depend on the color Ω(q) of the return state q as well as on
the color Ω(qi) of the argument qi.

The discovery of the modal nature of coloring in our variant of the Kobayashi-
Ong type system plays a fundamental rôle in our unification of higher-order
model-checking and contemporary semantics. In particular, it leads us in
Part III to the very natural definition of denotational models of the λY -
calculus, based on the construction of a coloring comonad and of an inductive-
coinductive interpretation of the fixpoint operator Y , based on the parity
condition. We establish moreover that the resulting proof system satisfies a
soundness-and-completeness theorem (Theorem 19) similar to Theorem 16. As
such, it provides a denotational semantics of higher-order model-checking where
the interpretation of a higher-order recursion scheme reflects its acceptance by
a given alternating parity tree automaton.
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6.2 A proof-theoretic reformulation

Before introducing in §6.3 our modal variant of the Kobayashi-Ong type sys-
tem, we find useful to replace the parity game Adamic(G,A) by a proof system
KOfix(G,A) with typing derivations of possibly infinite depth. To that pur-
pose, we introduce the intermediate parity game Edenic(G,A).

From Adamic(G,A) to Edenic(G,A). Despite its intuitive connection with
type theory, the game Adamic(G,A) does not describe the on-the-fly construc-
tion of a branch of a typing proof, for two essential reasons:

• Eve does not provide a witness of the typing proof of the sequent (6.5)
which builds Γ, so that proofs can not be extracted from plays, and
that no distinction is made between different derivations with the same
conclusion,

• and Adam does not play an occurrence of a non-terminal in R(F ), but
a typing which could, due to idempotency, correspond to several Axiom
leaves of a derivation tree.

In order to understand the game Adamic(G,A) from a purely type-theoretic
point of view, we introduce the parity game Edenic(G,A), which only differs
on these two points:

• Every time Eve plays a move Γ such that

Γ ` R(F ) : θ :: κ(F )

she needs to produce a typing derivation π of this sequent,

• Once Eve has played in this way, and every time Adam plays after it a
move

G : �m θ :: κ(G)

appearing inside the context Γ just played by Eve, Adam should also
play an occurrence of this non-terminal in the typing derivation π of
R(F ). Equivalently, Adam should pick an Axiom rule introducing a non-
terminal in the typing derivation π provided by Eve at the previous turn.

Note that the resulting game is bigger than the original game Adamic(G,A),
yet finite. We prove the following correspondence:

Proposition 15. The parity games Adamic(G,A) and Edenic(G,A) are equiv-
alent, in the sense that a player Eve or Adam has a winning strategy in one
game if and only if she or he has a winning strategy in the other game.

Note that the translation of strategies of Edenic(G,A) to strategies of
Adamic(G,A) may be seen as a collapse which relies on a particular uniformiza-
tion property, reminiscent of the proof of positional determinacy of parity
games: from a winning strategy for Eve in Edenic(G,A), one can extract a
strategy such that, given a colored type, any occurrence of a non-terminal with
this type will be mapped to the same typing proof.
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From Edenic(G,A) to the proof system KOfix(G,A). In order to give
a purely type-theoretic account of the parity game Edenic(G,A), we accom-
modate recursion in the intersection type system KO(A). We proceed by ex-
tending KO(A) with a rule fix whose purpose is to expand the non-terminals
F ∈ N of the original recursion scheme G. The original intersection type sys-
tem KO(A) is a refinement system based on the simply-typed λ-calculus: its
typing derivations are finite. Adding the fix rule to the proof system thus en-
ables one to obtain possibly infinitary derivation trees. So, given a higher-order
recursion scheme G and an alternating parity automaton A, we define the in-
tersection type system KOfix(G,A) as the system KO(A) extended with the
recursion rule below:

Γ ` R(F ) : θ :: κ
fix dom(Γ) ⊆ N

F : �Ω(θ) θ :: κ ` F : θ :: κ

An important novelty of the resulting type system, as we have just said, is that
derivations with possibly infinite depth are allowed in the system KOfix(G,A).
Note moreover that the fix rule depends on the underlying higher-order recur-
sion scheme G. The type system KOfix(G,A) thus depends of both G and A.

We now explain how the parity game Edenic(G,A) and the proof system
KOfix(G,A) are related. The key observation is that the total strategies σ for
Eve in Edenic(G,A) are in one-to-one correspondence with the derivation trees
of the initial sequent

S : �Ω(q0) q0 :: o ` S : q0 :: o (6.6)

in the type system KOfix(G,A). The translation of a total strategy σ for Eve
in Edenic(G,A) into a proof π(σ) in KOfix(G,A) proceeds by incrementally
plugging to every fix rule the finite proof-tree Eve plays when she follows the
total strategy σ, starting from the unfolding of the axiom S of the scheme:

...
Γ ` R(S) : q0 :: o

fix
S : �Ω(q0) q0 :: o ` S : q0 :: o

The converse process can be defined in a similar way. It enables one to associate
to every derivation tree π in the proof system KOfix(G,A) a total strategy
σ(π) played by Eve in Edenic(G,A). Moreover, the translations are mutually
inverse, in the sense that

σ(π(σ)) = σ and π(σ(π)) = π.

The proof system KOfix(G,A) is slightly biased towards Eve’s strategies in
Edenic(G,A). However, a strategy by Adam in Edenic(G,A) has also a mean-
ing (although less obvious) in the proof system KOfix(G,A). Indeed, suppose
that τ is a strategy for Adam in Edenic(G,A), and let π be a derivation tree
of the base sequent (6.6). It appears that the interaction of Adam’s strategy
τ and Eve’s strategy σ(π) in Edenic(G,A) corresponds to the exploration of
exactly on branch of the derivation tree π. In particular, the infinite plays of
Edenic(G,A) where Eve follows the strategy σ(π) are in one-to-one correspon-
dence with the infinite branches of π. Note that the finite plays where Eve
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follows σ(π) are not exactly the finite branches of π, but paths leading to an
occurrence of the fix rule unfolding a non-terminal to a term. In particular,
the maximal finite plays lead to a fix rule unfolding a non-terminal to a term
without non-terminals.

Accommodating colors in KOfix(G,A). One main benefit of this formu-
lation compared to the original formulation by Kobayashi and Ong using the
parity game Adamic(G,A) [KO09] is that the parity condition of the alternat-
ing parity tree automaton A may be reformulated as a parity condition on the
infinite paths of the derivation trees of KOfix(G,A). The key idea to perform
this transfer of colors from automata theory to proof-theory is to color the fix
rules of the typing derivation tree π. A subtle point is that we need to color the
fix rules of the derivation tree π in the same way as the corresponding moves
are colored in the game Edenic(G,A). As we will see, the resulting coloring
policy is far from obvious from a proof-theoretic point of view. This has to do
with the original coloring policy of the game Adamic(G,A) designed by Ko-
bayashi and Ong. The situation will become much clearer and nicer when we
shift to our modal coloring policy in §6.3.

Let us explain how this coloring policy works for KOfix(G,A). Every fix
rule (?) expands a non-terminal G, typed with �Ω(θ) θ, which occurs in a term
R(F ) itself introduced by a fix rule noted (??). The only exception is the fix
rule (?) of the root of the derivation tree. The fix (??) rule is precisely the
previous fix rule on the path between the root of the derivation tree and the
non-terminal G unfolded by the rule (?). The fix rule (??) introduces a context
Γ typing a sequent

Γ ` R(F ) : θ :: κ(F )

By definition of (??), the non-terminal G occurs in the context Γ with several
colored intersection types, as follows:

G :
∧
i∈I

�mi θi :: κ(G)

One of these colored intersection types �mi θi corresponds to the occurrence of
the non-terminal G of interest in the term R(F ). We color the fix rule (?) un-
folding this occurrence of G with the color mi. Note that, by construction, the
color mi is greater than the color Ω(θ). Every fix rule of the tree is assigned a
color in this way, except the fix rule at the root which receives the color Ω(q0).
All the other rules, which are not fix rules, are assigned the neutral color 0.

At this stage, we are ready to define the notion of winning derivation tree.
Every infinite branch in a derivation tree π of KOfix(G,A) encounters an in-
finite number of fix rules. The color of an infinite branch is thus defined as
the maximal color m ∈ Col encountered infinitely often along it. An infinite
branch of a derivation tree is declared winning precisely when its color is an
even integer.

Definition 33. A derivation tree of KOfix(G,A) is winning when all its infinite
branches are winning.
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As we have just said, the coloring policy of the fix rules in the derivation
trees of KOfix(G,A) is designed to reflect precisely the coloring policy of the
parity game Edenic(G,A). We will see in §6.3 how to define an alternative
notion of coloring, this time on derivation trees of our modal type system. In
this alternative formulation, the colors will be transmitted and tagged on the
Application rules, and no longer on the fix rules. This change of perspective
comes from the discovery that the coloring operation can be defined in a modal
way, and therefore behaves in the spirit of linear logic, as a calculus of functorial
boxes [Mel06b]. Each Application rule will open coloring boxes, and the color
of a branch will be precisely the maximal color crossed infinitely often along it.

Since we were careful to define the coloring policy of the fix rules in KOfix(G,A)
in harmony with the color policy of the parity game Edenic(G,A), a derivation
tree π is winning if and only if the associated strategy σ(π) for Eve is winning
in the parity game:

Theorem 17.

• A total strategy σ for Eve is winning in Edenic(G,A) if and only if π(σ)
is a winning derivation tree of KOfix(G,A).

• A derivation tree π of KOfix(G,A) is winning if and only if Eve’s total
strategy σ(π) is winning in Edenic(G,A).

As a consequence, Theorem 16 can be rephrased as follows:

Given a productive recursion scheme G and an alternating parity
automaton A, there exists a winning run-tree of A over 〈 G 〉 with
initial state q if and only if the sequent

S :
∧
{1}

�Ω(q) q :: o ` S : q :: o

has a winning derivation tree in the type system KOfix(G,A).

6.3 A proof-theoretic and modal reformulation

One problem with the original type system by Kobayashi and Ong is that it
can not be interpreted as a modal proof system (at least in the style of S4),
because of the definition of the Axiom and δ rules in their original system. For
instance, the Axiom rule

Axiom (x ∈ V ∪ N )
x : �Ω(θ) θ :: κ ` x : θ :: κ

requires to tag the intersection type θ it introduces in the context by its color
Ω(θ). From a modal point of view, this rule would mean that

�m θ ` θ

holds when θ is of the form τ → q for a state q of color m. For a very long
time we tried to understand the modal meaning of this rule, but it seemed to
lead nowhere serious. So, in order to address this obstruction, we will need to
revise drastically the coloring system as we found it in [KO09] in such a way
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that the soundness-and-completeness theorem (Theorem 16) still holds in our
setting. Moreover, we believe that by doing this we were able to capture the
essence of the original type system.

It appears that the purpose of the coloring annotation of a non-terminal
F occurring in a term t is to carry coloring information on the context C
generated by a reduction of t putting F in head position. Let t be a term
of simple type o appearing during the reduction of a higher-order recursion
scheme G. Suppose that t is such that an inductive application of the weak
head reduction computes1:

t →∗ C [F t1 · · · tn] (6.7)

where the branch of C leading to the hole filled with F t1 · · · tn only contains
terminals of the signature Σ of interest. To ease reasoning, we will consider
that there is only one occurrence of the non-terminal F in C [F t1 · · · tn]. Then
the context C[ ] generated by this reduction contains a subtree of the normal
form 〈 t 〉 of t. This subtree is the partial production of C [F t1 · · · tn], obtained
by the transformation

C [F t1 · · · tn] 7→ (C [F t1 · · · tn])
∇

of Definition 21 (on p.72). Due to the assumption we made on C[ ], the partial
production contains the whole branch leading to the hole [ ].

Let us now consider the lifting of this reduction to a derivation of the
sequent

Γ, F :
∧
i∈I

�mi θi :: κ(F ) ` t : q :: o (6.8)

The application of the β-reduction to the term t can be seen as a rewriting
procedure on proofs, associated with the subject reduction property, as ex-
plained in Chapter 5 for intersection types without coloring annotations and
parametrized by an alternating automaton A. Recall also from Chapter 5 that
while the β-reduction of t computes the tree 〈 t 〉 it represents, the normaliza-
tion of typing derivations in the associated intersection type system computes
a representation of a run-tree of A over 〈 t 〉. In this way, the rewriting of the
proof of the sequent (6.8) along the reduction (6.7) produces a proof of

Γ, F :
∧
i∈I

�mi θi :: κ(F ) ` C [F t1 · · · tn] : q :: o (6.9)

which represents a run of the alternating automaton A over the subtree C∇[ ]
of 〈 t 〉. Note that the notion of execution of an automaton is slightly extended
here, as the tree we consider has a hole. This hole is just treated as a unlabeled
leaf: it inherits a state from the execution of the automaton over its predecessor,
and we assume that the automaton accepts the leaf. In the resulting run,
the hole may appear several times, as the execution of the automaton may
have duplicated it. It follows that the derivation of (6.9) may contain several
occurrences of F , even though we assumed that F occurs only once in the

1In general, we would have to consider also the unfolding of non-terminals, regulated by
the rewrite rules of G. We prefer to stick to a situation which does not require it, as this
would make our explanation unnecessary complex. For the general case, see the proof of
soundness in Chapter 8.
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term C [F t1 · · · tn]. Each of these occurrences in the proof is introduced by
an Axiom rule, with an intersection type �mi θi. The color mi is precisely the
maximal color seen from the root of this run-tree over C∇[ ] to the copy of the
hole where the occurrence of F of interest is inserted.

What we have just explained treats the situation when the context C[ ] is
non-empty. We also need to consider the case of a rule whose rewriting does
not produce any tree context, as for instance G = F : we have

G → C [F ]

with C = [ ] the empty tree context. In this case, if F is typed with the
state q, the original type system of Kobayashi and Ong attributes it the color
Ω(q). However, the execution of any alternating automaton A over the empty
tree context C = [ ] produces this empty tree context again. A hurdle to a
proper definition of the color annotation which should be attributed to F is
the fact that the maximal color encountered from the root of C to its hole is
ill-defined, as there is no color on this empty path. We therefore introduce a
new, neutral color ε, indicating that the branch of the run-tree is empty. This
neutral color will allow us to design an Axiom rule following the principles of
a modal logic. Note that this neutral color is only introduced here to allow a
uniform definition of types and contexts; it should be understood as the absence
of a coloring annotation, as it does not affect the coloring of types. We could
thus write

�ε θ = θ.

Due to the introduction of this neutral color, we redefine the set of colors as:

Col = {Ω(q) | q ∈ Q } ] { ε }

The intersection types, the refinement relation and the action of a color modal-
ity on intersection types and contexts are defined just as in the previous section,
setting

max(c, ε) = c for every color c ∈ Col

From this, one obtains an intersection type system Z(A) parametrized by
the alternating tree automaton A, whose rules are given in Figure 6.2. Here
we use the Hebrew letter Z which should be read “tsadi”. This type system is
a variant of the original intersection type system KO(A), with the following
changes:

• in the Axiom rule

Axiom (x ∈ V ∪ N )
x : �ε θ :: κ ` x : θ :: κ

the variable x is introduced with the neutral color ε, as its normalization
produces an empty context. In the formulation of Figure 6.2, we write

x :
∧
{?}

�ε θ :: κ

as we did for the Kobayashi-Ong type system, in order to allow a more
uniform formulation of contexts.
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• in the δ rule, the change is more subtle. The idea is to replace the typing

a : �max(Ω(q),Ω(q1)) q1 → �max(Ω(q),Ω(q2)) q2 → q

of a terminal a with the typing

a : �Ω(q1) q1 → �Ω(q2) q2 → q

in which the coloring by the state q does not appear on arguments any-
more.

This change in the δ rule is inspired by the fact that, on a branch of a
partial run-tree or on an infinite branch

a1 · a2 · · · an · · ·

every symbol ai+1 occurs as argument of its predecessor ai, and therefore inher-
its the color of its return state qi+1 from the fact that it is taken as argument
by the symbol ai. For this reason, it is not necessary to propagate in the typing
the color of the return state qi+1 of a symbol ai+1 of the signature Σ. This
leads us to a lighter treatment of colors, moreover nicely connected to modal
logic. This discussion is carried out in more details in the proofs of soundness
and of completeness of the type system Zfix(G,A) in Chapter 7 and Chapter 8.
This alternative point of view enables us to understand semantically coloring as
a family of modal boxes (�m)m∈Col which formally defines what Melliès calls
a parametric comonad in [Mel14b,Mel06b], paving the way for the semantic
constructions for higher-order model-checking defined in Part III. The notion
of parametric comonad is discussed in §6.5.

Just as KO(A), the resulting type system Z(A) enables us to type the
rewriting rules of a higher-order recursion scheme

Γ ` R(F ) : σ :: κ (6.10)

where the non-terminals occurring in the λ-term R(F ) appear as variables
in the context Γ of the typing judgment, but it does not include a fixpoint
operator Y and for that reason does not accommodate recursion.

Interpretation of recursion. We define Adamic(G,A) and Edenic(G,A) as
the counterparts of Adamic(G,A) and Edenic(G,A) where Eve builds deriva-
tions in the type system Z(A), and where Adam picks typings for non-terminals
from these proofs. In the same way as Proposition 15, we can establish that
the games Adamic(G,A) and Edenic(G,A) are equivalent. Given a higher-order
recursion scheme G and an alternating parity automaton A, we define the inter-
section type system Zfix(G,A) as the system Z(A) extended with the recursion
rule below:

Γ ` R(F ) : θ :: κ
fix dom(Γ) ⊆ N

F : �ε θ :: κ ` F : θ :: κ

and we restrict at the same time the Axiom rule to variables x ∈ V, so that
it can not be applied to non-terminals any more. The rule fix enables the
construction of derivation trees of countable depth. In the same way as Theo-
rem 17 there is a one-to-one correspondence between the total strategies for Eve
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Axiom (x ∈ V ∪ N )
x :

∧
{?} �ε θ :: κ ` x : θ :: κ

{ (i, qij) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ a ∈ Σ

∅ ` a :
∧k1
j=1 �Ω(q1j) q1j → . . . →

∧kn
j=1 �Ω(qnj)

qnj → q :: o→ · · · → o→ o

Γ ` t : (�m1 θ1 ∧ · · · ∧�mk θk)→ θ :: κ→ κ′ Γ1 ` u : θ1 :: κ · · · Γk ` u : θk :: κ
App

Γ ∪ �m1Γ1 ∪ . . . ∪ �mkΓk ` t u : θ :: κ′

Γ , x :
∧
i∈I �mi θi :: κ ` t : θ :: κ′ I ⊆ J

λ (x ∈ V)
Γ ` λx . t :

(∧
j∈J �mj θj

)
→ θ :: κ→ κ′

Figure 6.2
The type system Z(A) associated to the alternating parity tree automaton A.

in Edenic(G,A) and the derivation trees of Zfix(G,A). This correspondence no-
tably maps winning strategies to winning derivation trees and conversely win-
ning derivation trees to winning strategies, for the notion of winning derivation
tree we define just below.

First coloring policy. A first manner to reflect the parity condition of
Edenic(G,A) over the derivation trees of the system Zfix(G,A) is to proceed
in the same spirit as we did for Edenic(G,A) and KOfix(G,A) in §6.2. We
attribute the neutral color ε to the fix rule occurring as root of the tree, and to
every non-fix rule. We attribute to every other fix rule the color mi introduced
by the preceding fix rule for the occurrence of the non-terminal it rewrites.

Second coloring policy. A second way, which leads to an equivalent and
more local definition of the color of a branch, consists in assigning a color to
each node of the derivation tree as follows:

• the node Γi ` u : θi :: κ is assigned the color mi in every Application
rule

Γ ` t : (�m1
θ1 ∧ · · · ∧�mk θk)→ θ :: κ→ κ′ · · · Γi ` u : θi :: κ · · ·

Γ + �m1
Γ1 + . . . + �mkΓk ` t u : θ :: κ′

of the derivation tree,

• all the other nodes of the derivation tree are assigned the neutral color ε,
which means in some sense that they are not colored.

We are now ready to extend the usual parity condition with a neutral color ε,
according to both coloring policies. This leads to a natural definition of the
color of an infinite branch of a given derivation tree: it is
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• the neutral color ε if no other color m ∈ Col occurs infinitely often in the
branch,

• otherwise, the maximal non-neutral color m ∈ Col \ {ε} seen infinitely
often.

We call « fix color » the color of an infinite branch according to the first col-
oring policy, and « App color » the color of a branch according to the second
policy. An infinite branch of the derivation tree is declared winning for the fix
(resp. App) policy precisely when its fix (resp. App) color is an even integer,
and in particular is different from the neutral color. A winning derivation tree
for the fix (resp. App) coloring policy is then defined as a derivation tree whose
infinite branches are all winning in the sense just explained.

The two coloring policies are equivalent, as stated by the following theorem:

Theorem 18. Let π be a Zfix(G,A) derivation tree, and b an infinite branch
of this tree. Then the fix color of b is equal to is App color.

Corollary 2. Let π be a Zfix(G,A) derivation tree. Then π is winning for the
fix policy if and only if it is winning for the App policy.

We will thus say that π is winning when it is winning for any of the two
policies. Theorem 18 is a consequence of the following proposition, which
implies that the fix color of an infinite branch of π is equal to its App color:

Proposition 16. Consider a proof π in Z(A) of the sequent

Γ, F :
∧
i∈I

�mi θi :: κ(F ) ` t : θ′ :: κ (6.11)

and a branch leading from the root of π to a leaf introducing an occurrence of
the non-terminal F whose type in the context of the sequent (6.11) is �mi θi.
Then then the App color of this branch is mi.

Proof. We proceed by induction on t:

• If t = x is a variable, then π simply consists of an Axiom leaf and the
context does not contain any non-terminal. Such a case can not occur on
a branch leading to a leaf introducing a non-terminal.

• If t = F is a non-terminal, then π simply consists of an Axiom leaf

Axiom
F :

∧
{i} �ε θi :: κ ` F : θi :: κ

The maximal color seen on this branch consisting of a single node is the
color of the Axiom rule, that is ε, which coincides with the color of F in
the context.

• If t = λx. u is an abstraction, since x ∈ V, the proof π is of the shape
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π′

...
Γ, F :

∧
i∈I �mi θi :: κ(F ) , x :

∧
j∈J �m′j θ

′
j :: κ′ ` t : θ′′ :: κ′′ J ⊆ K

Γ, F :
∧
i∈I �mi θi :: κ(F ) ` λx . t :

(∧
k∈K �m′k θ

′
k

)
→ θ′′ :: κ′ → κ′′

where by induction hypothesis the maximal color seen from the root of
π′ to the occurrence of F of interest is mi. Since the rule λ is colored
with ε, the maximal color seen from the root of π to the occurrence of F
of interest is max(mi, ε) = mi, which is the color of the corresponding
occurrence in the context of the conclusion of π.

• If t = u v, then π is of the shape

π′

...

Γ ` u :
(
�m′1 θ1 ∧ · · · ∧�m′k θk

)
→ θ :: κ→ κ′

π′j

...
· · · Γj ` v : θj :: κ · · ·

Γ + �m′1Γ1 + . . . + �m′kΓk ` u v : θ :: κ′

where the occurrence of F of interest is either a leaf of π′ or a leaf of π′j
for some j.

– If it is a leaf of π′, then F : �mi θi :: κ(F ) ∈ Γ. We apply the
induction hypothesis to this occurrence of π′, and the color of the
branch leading to it in π is the same as in π′, as the node

Γ ` u :
(
�m′1 θ1 ∧ · · · ∧�m′k θk

)
→ θ :: κ→ κ′

is colored with ε. So the maximal color seen along the branch is mi

and we can conclude.

– If it is a leaf of π′j for some j, then the occurrence of F of interest
appears in Γj with a color m′′ which is, by induction hypothesis,
the maximal color seen on the path from the root of πj to the leaf
introducing this occurrence. By definition of the Application rule,
mi = max(m′j ,m

′′). Consider now the maximal color seen from the
root of π to the leaf introducing the occurrence of interest: since the
node

∆j ` v : θj :: κ

is attributed color m′j , it is max(m′j ,m
′′) = mi as well.

6.4 Soundness and completeness of our modal system

Once the notion of infinite winning derivation tree explicated, there remains to
relate this winning condition to the acceptance condition of alternating parity
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automata, by adapting Theorem 16 to the modal coloring policy of the type
system Z(A). The following theorem establishes a soundness and completeness
theorem which relates the winning condition on the infinite derivation trees of
Zfix(G,A) to the parity acceptance condition of the automaton A during its
exploration of the infinite tree 〈 G 〉 generated by the recursion scheme G:

Theorem 19 (Soundness and completeness). Suppose given a productive recur-
sion scheme G and an alternating parity automaton A. There exists a winning
run-tree of A over 〈 G 〉 with initial state q if and only if the sequent

S :
∧
{1}

�ε q :: o ` S : q :: o (6.12)

has a winning derivation tree in the type system Zfix(G,A).

The two following sections are devoted to a summary of the proof together
with some remarks about possible extensions or variants, followed by an ex-
tension of the type system with a general form of weakening. This general
weakening will be required for later connections of the type system with a
finitary, colored model of linear logic.

We give the proof of the soundness-and-completeness theorem in two steps:
the completeness proof appears in Chapter 7, and Chapter 8 is devoted to the
soundness proof. These proofs are based on the ones appearing in Kobayashi
and Ong’s unpublished journal version [KO] of their original article [KO09]. We
give essentially the same proof, but with our modified, modal coloring policy,
and we add some explanations to ease the understanding of this complex proof.
Although we follow essentially the notations used in the unpublished proof
of [KO], our reconstruction and adaptation of the proof of soundness benefited
from the nice account given by Haddad in his PhD thesis [Had13b]. We notably
emphasize the main challenge of the completeness proof: introducing optimal
typings for non-terminals, in a way which is deeply related to the fact that
the head normalization computes the normal form of higher-order recursion
schemes.

6.5 Remarks on soundness and completeness

Let us start this section by giving the outline of the proof of soundness and
completeness of the idempotent intersection type system Zfix(G,A) for the
higher-order model-checking problem. For technical convenience, the proof is
formulated in the game Adamic(G,A), in which two players exchange typing
information about the rules of a higher-order recursion scheme G.

• Completeness consists in building a winning strategy for Eve from an
accepting run-tree of A over 〈 G 〉. This run-tree can be computed by a
rewriting relation similar in the spirit to →∞G,A, but which is not con-
sidered coinductively – although the relation may be iterated countably
to generate the run-tree. From a sequence computing this run-tree, we
extract information allowing to type the rules of recursion schemes, so
as to generate a winning strategy for Eve in Adamic(G,A). The point
is, to type each symbol in head position, to extract from the reduction
sequence the set of types its arguments will actually need in the future
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– that is, the set of intersection types they will have when they appear
in head position in the reduction. The reason of this quest for mini-
mality, emphasized by the example of p.147, is that Eve may introduce
typings for non-terminals of the recursion scheme which are never actu-
ally accessed in the reduction, and introduce in this way loosing plays in
Adamic(G,A), unrelated to the run-tree of A over 〈 G 〉. These minimal
typings and the associated contexts allow to define a strategy for Eve.
This strategy is winning because the color of the type of a non-terminal
in a context – and thus, the color associated to Adam’s move picking it
– is precisely the color of the fragment of the branch of interest the head
reduction putting it in head position generates. This allows to relate the
maximal color occurring infinitely often along any infinite branch of the
run-tree with the maximal color seen infinitely often in the interaction of
Adamic(G,A) which explores it.

• Soundness consists in generating a winning run-tree of A over 〈 G 〉 from
a winning strategy for Eve in Adamic(G,A). The point is to introduce a
rewriting relation whose spirit is

– to rewrite non-terminals according to the rules of G and to perform
subject reduction on the resulting derivations provided by Eve’s
strategy,

– and to extract from these derivations information on the transitions
to use to generate the run-tree.

The fact that the run-tree is winning comes, again, from the fact that
coloring is in a sense invariant under β-reduction: the color of an infinite
branch may be computed from the colors occurring in the infinite play
exploring it. An important lemma, which was missing in the original
proof of Kobayashi and Ong [KO09] but is proved in the extended ver-
sion [KO], states that every infinite branch comes indeed from an infinite
play of Adamic(G,A).

Non-idempotent types. Following the discussion of Chapter 5, a first natu-
ral question is to design a non-idempotent variant of Zfix(G,A), and to establish
a soundness-and-completeness theorem for it. This would not change the struc-
ture of the proof, and in particular not the soundness proof, in which subject
reduction would be in fact cleaner. However, as it appears in the completeness
proof, when the types of prefixes are defined in §7.4, intersection types with
countable intersections would be required in the non-idempotent case. The
reason is that an argument of a head symbol f may be put in head position
infinitely often, as in the example of p.153. It follows that the intersection
type of this head symbol f would be described in that case by an infinite in-
tersection. The model of linear logic we introduce in Chapter 9 needs to be
infinitary for the same reason: the need for a countable multiplicity for inter-
section types. Without this infinite multiplicity, the non-idempotent variant of
the type system only captures finite run-trees of A over 〈 G 〉. The infinitary
multiplicities occurring in the non-idempotent type system account for the use
of a potentially infinite number of subterms in the computation of the run-tree.
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Subtyping. Another natural question coming from the discussion on deno-
tational models of Chapter 5 is the one of subtyping. Its presence in a deno-
tational model associated to an idempotent type system is related to the fact
that while typability is preserved by β-reduction and expansion in such a type
system without subtyping, it is not preserved by η-reduction, see for instance
Salvati [Sal10] in the context of higher-order model-checking. The addition of
subtyping allows to solve this issue, and to obtain a type system invariant mod-
ulo both β and η. This is why subtyping is necessary in the intersection type
systems corresponding to the semantics of the λ-calculus in the Scott model
of linear logic given by Ehrhard in [Ehr12a] and by Terui in [Ter12] – as this
denotational model is closed under both β and η reductions and expansions.
The direct extension of the theorem of soundness and completeness to a setting
with subtyping would probably be technically involved – while the extension of
the completeness is immediate, the one of the soundness would require to track
precisely occurrences of variables and non-terminals. Indeed, the presence of
subtyping implies that an occurrence of a variable or of a non-terminal may
appear with a different intersection type in the Axiom leaf that introduces it,
and in the context of the initial sequent of the proof of interest. In the sequel,
we will circumvent this difficulty by adapting another result of Salvati [Sal10]
which states that subtyping can be eliminated in η-long forms, and in particular
on the β-normal η-long ones.

It appears, to our knowledge, that subtyping has only been considered
marginally in the context of higher-order model-checking, and only as a tool
leading to optimizations, as explained by Kobayashi in [Kob13]. The soundness
of the extension of the uncolored version of the Kobayashi-Ong type system
with subtyping was studied by Ong and Ramsay, and appears in the latter’s
PhD thesis [Ram13].

The lack of subtyping does not affect the equivalence of the existence of
a winning strategy for Eve in one of the games, and of the existence of a
winning run-tree of the alternating automaton of interest. Indeed, the lack of
subtyping breaks the stability of typing modulo η-reduction: if Γ ` t : θ :: κ
and t→η t

′, it may be the case that Γ ` t′ : θ :: κ does not hold. However, it
is always possible to introduce a different context Γ′ such that Γ′ ` t′ : θ :: κ.
The idea is that this context contains types related by subtyping to the ones
occurring in Γ. So, if Eve has a winning strategy for a given recursion scheme,
she should also has one for a recursion scheme obtained by η-reduction of some
rules: informally, she will play some Γ′ instead of Γ.

More investigations on subtyping and η-conversion are carried in §10.3,
where we clarify the connection of Z(A) with a type system with idempotent
intersections and subtypings.

Relating plays of Adamic(G,A) and branches of the run-tree over 〈 G 〉.
In general, a winning strategy for Eve in Adamic(G,A) contains plays corre-
sponding to the branches of the run-tree computed by the proof of soundness,
but also “unnecessary” plays in which Eve gave to some non-terminals inter-
section types they can not have when they arrive in head position during the
computation. In particular, she may give a non-empty intersection type to a
non-terminal which will never occur in head position. In the soundness proof,
this does not matter since as long as Eve wins on all her plays, she wins on
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the ones corresponding to actual branches of the run-tree. In the completeness
proof, we compute a minimal strategy, in which only the necessary types are
played. In a sense, some order relation on strategies of Eve could be defined
to account for this situation. This also means that the soundness proof allows
to handle interactions in which the context contains typings of non-terminals
which are unnecessary from the point of view of the computation of the run-
tree: we may therefore consider, as we do in the next section, a more general
form in weakening in which such unnecessary typing information may be added
to proofs. The addition of such a general weakening policy is necessary to con-
nect the type system to a finitary model of linear logic.

Towards a coinductive proof. As explained in Chapter 4, we can see λY -
terms, and thus higher-order recursion schemes, as finitary representations of
infinite regular terms. This infinitary nature is rooted in the derivations of
the type system Zfix(G,A), in which the fix rule allows to formulate deriva-
tion trees with infinite branches. As such, a proper treatment of these trees
would require to define them coinductively, and to see the soundness as a co-
inductive subject reduction property. In other words, the proof of soundness
would compute the winning run-tree of A over 〈 G 〉 by an infinitary, coinduc-
tive rewriting process on coinductively-defined derivation trees. In this setting,
the completeness proof would be of interest: the author conjectures that a
form of coinductive subject expansion along →∞G,A would produce exactly the
minimal types and environments that the original completeness proof extracts
from a reduction sequence. Intuitively, the idea is that by going “backwards”,
the coinductive process has access to the result of the reduction, and thus
the branches it manipulates are only branches appearing in the run-tree over
〈 G 〉. The use of coinduction would be particularly sensible in the setting of
non-idempotent types, where it would probably ease the manipulation of the
countable multiplicities appearing in intersection types.

A modal coloring policy. The most important aspect of this soundness-
and-completeness theorem in ourself quest for denotational models for higher-
order model-checking is that it reveals the hidden, deeply comonadic behavior
of the coloring of alternating parity tree automata. In Chapter 5, we explained
how the intersection operator on types is related to the exponential of linear
logic by the fundamental decomposition of the intuitionnistic arrow in linear
logic:

A⇒ B = !A( B

In the colored system Zfix(G,A), the Application rule is

Γ ` t : (�m1 θ1 ∧ · · · ∧�mk θk)→ θ :: κ→ κ′ Γi ` u : θi :: κ

Γ ∪ �m1
Γ1 ∪ . . . ∪ �mkΓk ` t u : θ :: κ′

In addition to the duplication of typings of u the exponential modality of lin-
ear logic realizes in the non-colored case, we see that in this colored framework
the coloring operation � acts on each copy, and affects accordingly the con-
texts contained in these copies. The semantic idea behind the reformulation
of KOfix(G,A) into Zfix(G,A) is that every symbol of the signature Σ opens
indeed a coloring box which affects the behavior of the boxed term in the same



140
CHAPTER 6. A TYPE SYSTEM FOR HIGHER-ORDER

MODEL-CHECKING

way as an exponential modality ! of Girard, or more precisely as a comonadic
capability or coeffect [POM14]. In the case of colors and priorities, these co-
effects regulate the inductive/coinductive evaluation policy of fixed points in
the term. Consider a unary symbol a ∈ Σ such that δ(q, a) = (1, q0) ∧ (1, q1)
and set ci = Ω(qi). The application of a term t of appropriate type to a can
be understood pictorially as

a

t t

c0 c1

It should be noted that this figure depicts a very precise semantic concept: the
coloring modality is a parametric comonad [Mel14b], and the boxes we depict
here correspond to Mellies’ functorial boxes [Mel06b].

This structure of parametric comonad formalizes the fact that these col-
oring boxes have good algebraic properties: a box of color max(c1, c2) can be
duplicated into two nested boxes of respective colors c1 and c2, and there is a
neutral color ε which intuitively corresponds to the absence of a coloring box,
so that such boxes can be removed.

This observation has consequences at the logical level, as well as at the
semantic one. It induces that we can extend linear logic with a family of
modalities (�c)c∈Col , such that the sequents

�ε A ` A
�max(m1,m2) A ` �m1

�m2
A

�m A ⊗ �m B ` �m (A ⊗ B)

are canonically provable in this extension of linear logic with colors. As we
briefly explain in §9.11, it is enough and in fact more accurate for our purpose
to consider a colored extension of tensorial logic [MT10], in which the coloring
modality behaves in the same way.

In order to extend the connection between intersection types, indexed linear
logic and the relational semantics, we can extend indexed linear logic with the
family of modalities we just mentioned, but in an indexed way. In the resulting
logic, the intuitionnistic arrow can be translated as

A⇒ B = !u�~m A( B

where u : I → {1} is a function and ~m ∈ ColI is a vector of |I| colors.
The right-hand part of this equality can be precisely connected to the colored
intersection types of the shape∧

i∈I
�mi θi → θ

with additional conditions on the simple types the θi and θ refine. While we
keep colored indexed linear logic implicit in this work, it acts as a theoretic
bridge between colored intersection types and a colored extension of the rela-
tional semantics of linear logic, which we define in Chapter 9. Just as in the
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non-colored case, we can as well consider the finitary Scott semantics of linear
logic, and extend them in a similar way with a coloring modality, as we do in
Chapter 10.

In both cases, the point is that � is a parametric comonad which can be
composed with the usual exponential of linear logic – thanks to a distributive
law – to give birth to a new, colored exponential, which allows to interpret
λ-terms in colored models of linear logic.

It is important to stress that this algebraic structure of the coloring modal-
ity would allow to reflect colored intersection types in more than just these
two models of linear logic, and notably in models of game semantics. More
generally, the modal nature of the coloring annotation paves the way towards
an extension of dialogue categories [Mel09,Mel16a,Mel12,Mel16b] with a col-
oring modality and infinite interactions regulated by an inductive-coinductive
discipline. Moreover, the existence of a colored extension of tensorial logic is
suggesting a connection between the colored, infinitary relational semantics of
Chapter 9 and a colored, infinitary game semantics based on dialogue games,
extending the connection between tensorial logic and dialogue games investi-
gated by Melliès [Mel12].

Another extension would be to try to accommodate the soundness-and-
completeness proof to other effects, in order to describe other winning condi-
tions on alternating tree automata than the parity condition. For the parity
condition, an external winning condition is devised on elements of the set Col ,
whose finite composition is handled by a parametric comonad, and whose infi-
nite composition is performed by a fixpoint operator – the rule fix in the type
system, and an external fixpoint combinator in the colored models we are to
consider in Part III. It would be interesting, and probably challenging, to try to
mimic the situation with coeffects such as counters and probabilities – and to
try to excavate more generally the conditions the modality � and the fixpoint
operator need to satisfy for the soundness-and-completeness proof to hold.

6.6 Final remarks on weakening

In this section, we consider the addition of general weakening to the type system
Z(A), and the associated parity game Adamicst(G,A). The type system Zst(A)
is obtained from the one of Figure 6.2, by adding two extra rules:

Γ ` t : θ :: κ′
Weak (x /∈ dom(Γ))

Γ , x : ∅ :: κ ` t : θ :: κ′

Γ , x :
∧
i∈I �mi θi :: κ ` t : θ :: κ′ I ⊆ J

Weakc
Γ , x :

∧
j∈J �mj θj :: κ ` t : θ :: κ′

We do not add an explicit contraction rule, as this would be redundant:
contraction is already performed by the Application rule, by the Weakc rule,
and can be eliminated at other nodes of proofs.

We also modify the rule λ of KO(A) and of Z(A): there is no longer need
to introduce weakening in this rule in Zst(A), as it is handled by the general
rules we added. We therefore consider a usual abstraction rule in Zst(A):
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Γ , x :
∧
i∈I �mi θi :: κ ` t : θ :: κ′

λ (x ∈ V)
Γ ` λx . t :

(∧
i∈I �mi θi

)
→ θ :: κ→ κ′

In comparison with Kobayashi and Ong’s approach, the addition of explicit
weakening rules, and especially of the rule Weak, leads to a cleaner system.
Indeed, the rule λ of KO(A) (and of Z(A)) can abstract a variable which does
not occur in the context, simply because this is considered to be equivalent
to occurring with an empty set of typings in the context. In Zst(A), we make
explicit the introduction of such variables, and allow a more general form of
weakening, as it does not necessarily require to abstract the variables which
were weakened. We call Adamicst(G,A) the variant of Adamic(G,A) where Eve
plays by constructing proofs in Zst(A). We prove the following soundness and
completeness theorem by reduction to the one for Adamic(G,A):

Theorem 20. Given a productive higher-order recursion scheme G and an
alternating parity automaton A, there is a winning execution of A over G if
and only if Eve has a winning strategy in the game Adamicst(G,A).

Again, an alternative statement of this theorem can be given using the
type system Zstfix(G,A) where Zst(A) is extended with the fix rule. The comp-
leteness proof follows directly from Theorem 19, since it constructs a proof in
Z(A) which is easily translated into a proof of Zst(A) by adding the necessary
structural rules before using the rule λ. For the soundness proof, consider a
winning strategy σ for Eve in Adamicst(G,A). We define a winning strategy
σ† in Adamic(G,A) as follows: for every answer of Eve to a move of Adam,
the context she plays is justified by a proof π in Zst(A), whose conclusion is a
sequent of the form

Γ ` R(F ) : θ :: κ (6.13)

If this proof does not contain weakenings, nothing has to be done. Else, the
proof can be rewritten by commutation of structural rules: weakenings can
be brought to the bottom of the proof, unless they affect a variable which
is abstracted, in which case they can not be brought below the rule which
abstracts them. For instance, we can locally rewrite

Γ , x :
∧
i∈I �mi θi :: κ , y :

∧
k∈K �m′k θ

′
k :: κ′ ` t : θ :: κ′′ I ⊆ J

Weakc
Γ , x :

∧
j∈J �mj θj :: κ , y :

∧
k∈K �m′k θ

′
k :: κ′ ` t : θ :: κ′′

λ
Γ , x :

∧
j∈J �mj θj :: κ ` λ y . t :

(∧
k∈K �m′k θ

′
k

)
→ θ :: κ′ → κ′′

by exchanging these two rules, as it leads to a block with the same hypothesis
and conclusion:

Γ , x :
∧
i∈I �mi θi :: κ , y :

∧
k∈K �m′k θ

′
k :: κ′ ` t : θ :: κ′′

λ
Γ , x :

∧
i∈I �mi θi :: κ ` λ y . t :

(∧
k∈K �m′k θ

′
k

)
→ θ :: κ′ → κ′′ I ⊆ J

Weakc
Γ , x :

∧
j∈J �mj θj :: κ ` λ y . t :

(∧
k∈K �m′k θ

′
k

)
→ θ :: κ′ → κ′′

but we can not commute the rules in the following situation:
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Γ , x :
∧
i∈I �mi θi :: κ ` t : θ :: κ′ I ⊆ J

Weakc
Γ , x :

∧
j∈J �mj θj :: κ ` t : θ :: κ′

λ
Γ ` λx . t :

(∧
j∈J �mj θj

)
→ θ :: κ→ κ′

In the same way, a rule Weak can be brought down in the proof, but never
lower than a λ rule abstracting it, or than a Weakc applied to the variable
it introduces. When two Weakc rules affecting the same variable occur in a
row, they can be contracted to a unique one. This flexibility of the position of
structural rules in a proof allows us to rewrite the proof π of conclusion (6.13)
to a proof π′ of same conclusion, and therefore justifying the same move for
Eve, but in which the structural rules occur

• at the bottom of the proof, if they apply to variables which are not
abstracted,

• or just before the λ rule abstracting the variable they weaken.

To translate π′ to a proof of Z(A), we

• remove all the weakenings occurring at the bottom of the proof, obtaining
in this way a proof of typing of a sequent

Γ′ ` R(F ) : θ :: κ (6.14)

typing the same term as (6.13), and with the same type, but from a
subcontext Γ′ of Γ,

• and we use the fact that in Z(A) the abstraction rule contains weakening
on the abstracted variable to translate a block as

Γ , x :
∧
i∈I �mi θi :: κ ` t : θ :: κ′ I ⊆ J

Weakc
Γ , x :

∧
j∈J �mj θj :: κ ` t : θ :: κ′

λ
Γ ` λx . t :

(∧
j∈J �mj θj

)
→ θ :: κ→ κ′

in Zst(A) to

Γ , x :
∧
i∈I �mi θi :: κ ` t : θ :: κ′ I ⊆ J

λ (x ∈ V)
Γ ` λx . t :

(∧
j∈J �mj θj

)
→ θ :: κ→ κ′

in Z(A).

This process defines a proof π† in Z(A) of the sequent (6.14). In σ, Eve plays
Γ according to the proof π; we define σ† by letting her play the subcontext Γ′ of
Γ, according on the proof π†. This potentially reduces the set of moves Adam
could play, but does not introduce any new move, so that we can iterate the
construction of σ† by considering all potential moves of Adam and extracting
from σ a strategy playing without weakening. This defines σ†, which is a
winning strategy as every play in which Eve follows this strategy can be seen
as a play where she follows the winning strategy σ.





Chapter 7

Completeness of the type system

In this chapter, adapting the original proof of Kobayashi and Ong [KO], we
establish the completeness part of the soundness-and-completeness theorem
(Theorem 19). For convenience, we express it in an equivalent way using the
parity game Adamic(G,A):

Let A be an alternating parity automaton and G a productive
higher-order recursion scheme. If A has a winning execution over
〈 G 〉, then Eve has a winning strategy in Adamic(G,A).

We start by explaining the main idea of the proof completeness in §7.1, using
representations of plays as infinitary typing derivations in Zfix(G,A). The
crucial idea is that Eve should play in an « optimal » or « parsimonious » way,
in order to let Adam pick only non-terminals unfolding to subterms which will
actually be explored during the evaluation of the recursion scheme of interest.
In other words, Eve should proceed in such a way that Adam does not have too
much freedom. We then formalize the proof by adapting the original proof of
Kobayashi and Ong to the new modal coloring policy underlying Zfix(G,A) and
Adamic(G,A). We begin by defining in §7.2 a rewriting system (with rewriting
relation noted I) which computes a run-tree Trun of A over 〈 G 〉 by performing
the normalization of G at the same time as the execution of A. The rewriting
relation I on G works in the same spirit as the relation→∞G,A designed in §4.4,
since it also depends on the automaton A. We carry on and define in §7.3
a notion of color on the tree contexts produced during this rewriting process.
We explain in §7.4 how to deduce from a rewriting sequence I intersection
types θ for the prefixes t of the terms occurring in all the reduction, as well as
contexts Γ such that Γ ` t : θ :: κ holds in Z(A). After introducing these
necessary definitions, we give an overview of the proof in §7.5. We prove three
preliminary lemmas in §7.6, and then the completeness theorem in §7.7.

7.1 Optimal typings in an infinitary framework

While it is technically useful to prove the completeness of the type system Z(A)
in the parity game Adamic(G,A), we first give some informal explanations about
the proof in the type system Zfix(G,A), as it allows a convenient representation
of strategies. In Zfix(G,A), we can see (winning) run-trees of A over 〈 G 〉 as
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(winning) derivations typing the sequent

∅ ` 〈 G 〉 : q0 :: o

using only the rules Application and δ, in the spirit of Proposition 10. So the
idea is, as in Chapter 5, to use the information contained in such a derivation
to reconstruct a derivation of the sequent

S :
∧
{1}

�ε q0 :: o ` S : q0 :: o

using subject expansion. However, we need to take good care of the types we in-
troduce for non-terminals. Consider indeed the signature Σ = { a : 1, b : 1 },
and the recursion scheme

G =

 S = F H
F = λx. a (F x )
H = b H

over this signature Σ. Its normalization produces the infinite tree (which we
represent as a word, as it is defined using only constants of arity one):

〈 G 〉 = a a a · · ·

Using the rewriting relation →G a finite number of times produces

S →∗G a · · · a F ( b · · · b H )

but when the rewriting is iterated infinitely, the sequence of b is “postponed to
infinity”. Notice that the head reduction never rewrites the « useless » non-
terminal H. We need to reflect in the type of F the fact that it does not
actually use its argument, else we could obtain a loosing derivation even in a
case where 〈 G 〉 is accepted by the automaton of interest, as we shall explain
now. Consider the alternating parity automaton A with two states q0 and q1,
whose transition function is

δ(q0, a) = (1, q0)
δ(q0, b) = (1, q1)
δ(q1, b) = (1, q1)

and whose coloring function is defined by Ω(q0) = 0 and Ω(q1) = 1. We
depict in Figure 7.1 a derivation of Zfix(G,A) in which the typing of F indicates
that it uses its argument once; this enables us to introduce in the derivation
a loosing branch (of color 1) expanding H infinitely, while this is unnecessary
as the head reduction will never expand H. To compute the color of the two
infinite branches, note that we have two choices by Theorem 18:

• we can read the colors of all the boxes we cross on Application rules, and
take the maximal one among the ones occurring infinitely often,

• or we can read the colors introduced by the fix rules expanding the oc-
currences of the non-terminals appearing in the branch, and take the
maximal one occurring infinitely often.
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Along the leftmost branch, corresponding to the fix rules applied to S and
then infinitely to F , two colors occur infinitely often: the neutral color ε, and
the even color 0. It follows that this branch has color 0, and is therefore
winning. Along the rightmost branch, unfolding S and then infinitely H, we
see the color 0 only once, and then infinitely often the color 1. The color of this
branch is thus 1, and the branch is loosing. As a consequence, the derivation
of Figure 7.1 is loosing, even though the recursion scheme G it types generates
a tree 〈 G 〉 which is accepted by A.

In fact, we should not explore the rightmost branch in the derivation. We
should somehow be aware that F never uses its argument, and design accord-
ingly the optimal, winning derivation presented in Figure 7.2. The whole point
of the completeness proof is to introduce types only for non-terminals which
will occur in head position at some step of the rewriting process, and thus be
actually unfolded using the rules of the recursion scheme.

7.2 Partial run-trees and their computation

After these preliminary considerations, we may now adapt the proof of Koba-
yashi and Ong [KO] to our modal variant Z(A) of their original type system
KO(A).

In the sequel, we consider a productive higher-order recursion scheme G =
〈Σ,N ,R, S〉 , an alternating parity automaton A = 〈Σ, Q, δ, q0, Ω〉 having a
winning run-tree over 〈 G 〉, and we fix such a winning run-tree Trun. We also
set N = {F1, . . . , Fn}.

Recall that the run-tree Trun of A over 〈 G 〉 can be computed by the coinductive
relation

t →∗G,w a t1 · · · tn ti : qi,j →∞G,A t′i : qi,j

t : q →∞G,A (a (t′1 : (1, q1,1)) · · · (t′1 : (1, q1,k1)) · · · (t′n : (n, qn,1)) · · · (t′n : (n, qn,kn))) : q

introduced in §4.4. For technical convenience, and following [KO], we define a
set of labels Σcomp and a rewrite relation I on Σcomp-labeled unranked trees
which is essentially a sequential counterpart to →∞G,A. The set of labels Σcomp

also contains more than just terms and states, in order to ease the localization
of occurrences of non-terminals during the rewriting process.

Let n be the maximal arity of symbols of the signature Σ. The set of labels
Σcomp contains the symbols:

• 〈α, q 〉, where α ∈ {1, . . . , n} and q ∈ Q. Recall the definition of a run-
tree (Def. 11 on page 49): in the rewriting process, these labels will come
from Trun.

• 〈β, l, t, q 〉, where β ∈ ({1, . . . , n}×N)∗ is a sequence of pairs of natural
numbers used to identify uniquely each leaf introduced in the reduction,
l is a natural number counting the rewriting steps, t is a λ-term without
abstractions over Σ ]N , and q ∈ Q is a state of the automaton.
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∅ ` a : �0 q0 → q0

...
F : �ε (∅ → q0) ` F : ∅ → q0

F : �ε (∅ → q0) , x : ∅ ` F x : q0

F : �0 (∅ → q0) , x : ∅ ` a (F x) : q0

F : �0 (∅ → q0) ` λx. a (F x) : ∅ → q0
fix

F : �ε (∅ → q0) ` F : ∅ → q0 App
F : �ε (∅ → q0) ` F H : q0

fix
�ε S : q0 ` S : q0

To ease reading, we omit the singleton intersection
∧

{1} in types and contexts, as
well as the simple types as they are immediate to reconstruct. We write ∅ in the type
of F and of x to indicate the intersection of an empty set of refined types.
In this derivation, we assume that the fix rules justifying coinductively the typings
F : �ε (�0 q0 → q0) ` F : �0 q0 → q0 always reintroduce the same “finite piece
of derivation” in Z(A). Note that the Application rule used to deconstruct F H does
not explore H, as the typing of F indicates that it should not be considered – and
similarly for F x.

Figure 7.2: A winning derivation, obtained by typing only subterms reached
by the head reduction of the recursion scheme.

Σcomp-labeled unranked trees will be used to compute finite prefixes of Trun.
The inner nodes will be of the form 〈α, q 〉, and the leaves will be of either
shape:

• a leaf of the form 〈α, q 〉 corresponds to a leaf of Trun, so that the Σcomp-
labeled tree we consider contains the whole finite branch of Trun ending
on this leaf,

• a leaf of the form 〈β, l, t, q 〉 does not correspond to a node of Trun, but
its head normalization (as defined below) will produce one.

Given a sequence of pairs β = (m1, n1) · · · (mk, nk) ∈ ({1, . . . , n} × N)∗, we
define fst(β) = m1 · · ·mk. We then define the head rewriting relation I on
Σcomp-labeled unranked trees by induction:

1. If F ∈ N is a non-terminal which rewrites to R(F ) = λx1 . . . λxn. t then

〈β, l, F t1 . . . tn, q 〉 I 〈β, l + 1, t[xi ← ti], q 〉

In other words, to compute the label of the node of Trun identified by β,
we rewrite F and perform the necessary substitutions; and we increment
the counter l.

2. When a leaf is of the form 〈β, l, a t1 . . . tn, q 〉, the head rewriting process
computed the symbol a labeling the node located by β, and can therefore
forget the additional information about it since it will not be reduced
anymore: it only keeps 〈α, q 〉, where α = fst(β).
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Then it starts the computation of the children of this node, by reading
from Trun which transition of A it should use. So, if the children of
〈 fst(β), q 〉 in Trun are

〈α1, q1,1 〉 , . . . , 〈α1, q1,k1
〉 , . . . , 〈αn, qn,1 〉, , . . . , 〈αn, qn,kn 〉

we open accordingly new leaves to be rewritten:

〈β, l, a t1 . . . tn, q 〉 I

〈 fst(β), q 〉

〈β(n, kn), l + 1, tn, qn,kn 〉· · ·〈β(1, k1), l + 1, t1, q1,k1
〉· · ·〈β(1, 1), l + 1, t1, q1,1 〉

3. Defining tree contexts in the usual way by the grammar

C ::= [ ] | 〈α, q 〉 T1 · · ·Ti−1 C Ti+1 · · ·Tk

where the Tj are Σcomp-labeled unranked trees and [ ] is a distinguished
hole symbol, we extend the rewriting relation to contexts: if t I t′, then
for any context C we have C[t] I C[t′].

Note that this does not break the fact that the rewriting is restricted to
terms occurring in head position, due to the structure of the trees and
contexts we consider.

For a Σcomp-labeled unranked tree T , we define the Σcomp-labeled unranked
tree T ] by relabeling the leaves of T of the form 〈β, l, t, q 〉 with 〈 fst(β), q 〉.
Since I is essentially an inductive presentation of a sequentialization of the
coinductive rewriting relation →∞G,A, it is easy to see that if

〈 ε, 0, S, q0 〉 I∗ T

then T ] is a subtree of Trun. Moreover, there is a fair (that is, eventually
reducing every occurrence that can be rewritten) and possibly infinite sequence
generating Trun:

T0 = 〈 ε, 0, S, q0 〉 I T1 I T2 I · · · (7.1)

We fix such a sequence in the sequel, and will use it to define the appropriate
types for variables and non-terminals. This sequence will provide us with the
necessary information on the subterms which eventually occur in head posi-
tion during the head reduction, preventing us to consider typings exploring
unnecessary – and thus potentially loosing – branches as in Figure 7.1.

In the sequel, all the applications of the rewriting rule I we consider come
from the fixed rewriting sequence (7.1). More precisely, if we write

〈β, l, t, q 〉 I∗ C ′[ 〈β′, l′, t′, q′ 〉 ]

then we mean that there exists two integers i, j and a context C such that

Ti = C[ 〈β, l, t, q 〉 ]

and that
Tj = C[C ′[ 〈β′, l′, t′, q′ 〉 ] ]

where Ti and Tj appear in (7.1).
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For technical reasons, we consider that each subterm is identified by some
implicit label, so that we can distinguish between different occurrences of a
same term. The key point is that when we write

〈β, l, t0 t1 q 〉 I∗ C ′[ 〈β′, l′, t1 t2, q′ 〉 ]

we assume that t1 is the same subterm in both leaves, that is, that the reduction
of t0 t1 put its argument t1 in head position.

7.3 Color of a context and modal boxes

We consider contexts in which the hole is attributed a state: we write [ ]q for a
hole which is to receive either a tree of root 〈α, q 〉, or a leaf 〈β, l, t, q 〉. We
then define the color Ω(C[ ]q) of the context C[ ]q in the following way:

• if C[ ]q = [ ]q, then Ω(C[ ]q) = ε,

• if C[ ]q = 〈α, q′′ 〉 T1 · · · Ti−1 [C ′[ ]q]q′ Ti+1 · · · Tn, then

Ω(C[ ]q) = max (Ω(q′), Ω (C ′[ ]q))

Note that in the case where C ′[ ]q = [ ]q we have q = q′ and Ω(C[ ]q) =
Ω(q).

This definition differs from the original one by Kobayashi and Ong in [KO09],
formalized more precisely in [KO], in which Ω([ ]q) = Ω(q). This is a direct
consequence of our change of coloring policy: just as emphasized by Proposi-
tion 16, the color we compute on a finite branch of a tree is the maximal color
we cross. Each leaf 〈α, β 〉 of the run-tree Trun, whose children are

〈α1, q1,1 〉 , . . . , 〈α1, q1,k1
〉 , . . . , 〈αn, qn,1 〉, , . . . , 〈αn, qn,kn 〉

should be very precisely understood in our approach as opening a coloring box
of color Ω(qi,j) on its successor in direction (i, j). Since the empty context does
not create any box, we consider it of neutral color. This allows us to consider a
type system in which the coloring of the Axiom and δ rules obeys the principles
of a modal logic. Note also that our definition does not take into account the
color of the state of the root of the tree: consider for instance the color of the
branch

Ω (〈 ε, q0 〉 (〈 1, q1 〉 (〈 11, q2 〉 ([ ]q3)))) = max (Ω(q1), Ω (〈 1, q1 〉 (〈 11, q2 〉 ([ ]q3))))
= max (Ω(q1), Ω(q2), Ω (〈 11, q2 〉 ([ ]q3)))
= max (Ω(q1), Ω(q2), Ω(q3), Ω ([ ]q3))
= max (Ω(q1), Ω(q2), Ω(q3), ε)
= max (Ω(q1), Ω(q2), Ω(q3))

So, the color of the state of the root is not taken into account. The deep idea,
underlying the developments of Part III, is that coloring is a coeffect – or se-
mantically what Melliès calls a parametric comonad in [Mel14b,Mel06b]. This
means that only symbols occurring as arguments can receive a color. However,
this does not matter thanks to the following easy proposition:
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Proposition 17. Let C1[C2[ ]q]q′ be a context, then

Ω (C1[C2[ ]q]q′) = max (Ω (C1[ ]q′) , Ω (C2[ ]q))

In fact, when the context C1 opens the hole [ ]q′ , it opens a box of color Ω(q′)
which is taken into account when computing the color of the context. Therefore
it does not matter not to consider the color of the root of C2[ ]q: we already
counted it in C1[ ]q′ . When considering an infinite branch factorized as infinitely
many finite contexts, the only color that is ignored is the one of the root – but
this has no impact on the parity condition. This is the key point why the proof
by Kobayashi and Ong can be adapted so smoothly to our new coloring policy.

7.4 Using prefixes to reconstruct the contexts

In the previous sections, we defined a rewriting system computing the run-tree
Trun of A over 〈 G 〉 by the possibly infinite reduction sequence (7.1), defined as:

T0 = 〈 ε, 0, S, q0 〉 I T1 I T2 I · · ·

This sequence computes Trun by considering the sequence of head reductions of
G, performed as the same time as the exploration of the tree by the automaton
A. Recall from our remarks in §7.1 that defining an optimal strategy for Eve
requires to type the rules of 〈 G 〉 in a « optimal » or « parsimonious » way.
This means that a subterm appearing as an argument of an application should
only receive the intersection types it will encounter when it appears in head
position during the sequence of head reductions computing 〈 G 〉. To pave the
way for the definition of an optimal strategy for Eve, we formally define the
« parsimonious » types and contexts for subterms occurring in prefix position
in the rewriting sequence (7.1) computing Trun.

Type of a prefix. These preliminary definitions being given, our goal is now
to extract from the fixed rewriting sequence (7.1) an appropriate set of typings
for the rules of the higher-order recursion scheme G. We start by attributing
an intersection type to each term t0 occurring as a prefix of a term t, that is to
each term t0 such that t = t0 t1 · · · tk. Note that, for k = 0, this will allow
to type t as well. For each leaf 〈β, l, t, q 〉 of a tree occurring in the reduction
sequence (7.1), we attribute to every prefix t0 of t the type θ(t0,β,l) refining the
simple type of t0, by induction on this simple type:

1. If t0 :: o, we set θ(t0,β,l) = q, as the leaf we consider is 〈β, l, t0, q 〉.

2. If t0 :: κ1 → · · · → κn → o, the leaf we consider is of the form
〈β, l, t0 t1 · · · tn, q 〉. As emphasized by the examples given in Figure 7.1
and Figure 7.2, the point is to precisely give to every argument the set
of types it will need to have when appearing in head position later in
the reduction, and no more, as this may introduce unnecessary loosing
branches.

We therefore consider the set Sj of types �Ω(C′[ ]q′)
θ(tj ,β′,l′) such that

〈β, l, t0 t1 · · · tn, q 〉 I∗ C ′[ 〈β′, l′, tj t̃′, q′ 〉 ] (7.2)
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where t̃′ is a vector of terms we do not need to explicitly consider. The
set Sj is well-defined, as the simple type κj is lesser than the simple type
κ, so that we can use the induction hypothesis to obtain each θ(tj ,β′,l′).

Note also that there may be infinitely many trees of the form

C ′[ 〈β′, l′, tj t̃′, q′ 〉 ]

obtained via the rewriting (7.2). This may occur, for instance, when
evaluating a recursion scheme{

S = F t
F = λx. a x (F x )

with t some term of ground type and a a binary symbol. The set Sj is
however finite, thanks to the idempotency of intersection types and to the
finiteness of the set of colors. In a non-idempotent type system, the pre-
cise account of the multiplicity of use of a type would require to consider
intersections of countably many types. This motivates the introduction
of the infinitary relational semantics of linear logic in Chapter 9.

We can now define the type of the prefix t0 as

θ(t0,β,l) =
∧

S1 → · · · →
∧

Sn → q

Context of a prefix. Now that we attributed a type θ(t0,β,l) to every prefix
t0 of a leaf 〈β, l, t0 t1 · · · tn, q 〉 of a tree appearing in (7.1), we define an
associated context Γ(t0,β,l) such that

Γ(t0,β,l) ` t0 : θ(t0,β,l) (7.3)

holds in the type system Z(A), by induction on the structure of the term:

1. If t0 = a ∈ Σ is a terminal, we set Γ(t0,β,l) = ∅. By definition of the
rule δ, (7.3) holds.

2. If t0 = F ∈ N is a non-terminal, we set Γ(t0,β,l) =
∧
{1} �ε θ(F,β,l).

By definition of the Axiom rule, (7.3) holds.

3. If t0 = u v, consider the set S of triples

(β′, l′, Ω(C ′[ ]q′))

such that

〈β, l, t0 t1 · · · tn, q 〉 I∗ C ′[ 〈β′, l′, v t̃′, q′ 〉 ]

We consider a subset S′ ⊆ S such that for every (β′′, l′′, m) ∈ S there
is exactly one (β′, l′, m) ∈ S′ such that θ(v,β′,l′) = θ(v,β′′,l′′). We then
define

Γ(t0,β,l) = Γ(u,β,l) ∪
(⋃ {

�m Γ(v,β′,l′) | (β′, l′,m) ∈ S′
})
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7.5 Summary of the proof of completeness

The proof of completeness proceeds in two steps:

1. We first prove that we can use the “optimal” types and environments
we just defined to appropriately type the terms to which non-terminals
rewrite: for each occurrence of a non-terminal F in head position in
the reduction, occurring in a leaf identified by β and l, we can define a
context Γ such that Γ ` R(F ) : θ(F,β,l) holds. This is a consequence of
Lemma 2, which itself relies on Lemma 1.

2. We then show that it is a winning strategy for Eve in Adamic(G,A) to
play the context Γ from the node F : �m θ(F,β,l) :: κ(F ). This relies
on Lemma 3, which relates the color m attributed to F with the color
of contexts generated from the leaf identified by β and l and in which F
appears in head position.

These two steps allow to prove the completeness theorem (Theorem 21).

7.6 Three preliminary lemmas

Lemma 1. Suppose that

〈 ε, 0, S, q0 〉 I∗ C[ 〈β, l, t0 t1 · · · tn, q 〉 ]

with t0 = [x1 ← s1, . . . , xn ← sn]u. Then there exists a context Γ0, sets
J1, . . . , Jk and intersection types �mi,j θi,j for i ∈ {1, . . . , k} and j ∈ Ji that
satisfy the three following properties:

Γ0, . . . , xi :
∧
j∈Ji

�mi,j θi,j , . . . ` u : θ(t0,β,l)

{
�mi,j θi,j | j ∈ Ji

}
⊆
{
�Ω(C′[ ]q′ )

θ(si,β′,l′) | 〈β, l, t0 t1 · · · tn, q 〉 I
∗ C ′[〈β′, l′, si t̃′, q′ 〉]

}
Γ0 ⊆ Γ(t0,β,l)

Note that we do not mention simple types to ease reading; we will often do the
same implicitly in the sequel. For convenience, we will also write [x̃ ← s̃] for
the combined substitution [x1 ← s1, . . . , xn ← sn]. Remark that the second
condition formalizes the intuition we gave earlier: all the types occurring in a
context need to be used to type the corresponding argument when it is put in
head position by the rewriting process.

Proof. The proof proceeds by induction on the structure of u. The induction
is not very complicated, although the case where u is an application requires
heavy notations to apply the induction hypothesis.

• If u = a ∈ Σ or u = F ∈ N , taking Γ0 = Γ(t0,β,l) and Ji = ∅ for each
i satisfies the three conditions expressed in the lemma.

• If u = xi, then t0 = si. The three conditions hold for Γ0 = ∅, Jk = ∅
for every k 6= i, Ji = {1} and �i,1 θi,1 = �ε θ(t0,β,l).
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• If u = u0 u1, then t0 = t0,0 t0,1 with t0,0 = [x̃← s̃]u0 and t0,1 = [x̃←
s̃]u1. By definition of Γ(t0,β,l), there exists a finite set H such that

Γ(t0,β,l) = Γ(t0,0,β,l) ∪

( ⋃
h∈H

�mhΓ(t0,1,βh,lh)

)

θ(t0,0,β,l) =

( ∧
h∈H

�mh θ(t0,1,βh,lh)

)
→ θ(t0,β,l)

and for each h ∈ H,

〈β, l, t0 t1 · · · tn, q 〉 I∗ Ch[ 〈βh, lh, t0,1 t̃h, qh 〉 ]

with mh = Ω(Ch[ ]qh). This allow us, for each h ∈ H, to apply the
induction hypothesis to t0,1, and we obtain in this way a family indexed
by h ∈ H of types and contexts:

Γ0,h, . . . , xi :
∧

j∈Jh,i

�mh,i,j θh,i,j , . . . ` u1 : θ(t0,1,βh,lh)

{
�mh,i,j θh,i,j | j ∈ Jh,i

}
⊆
{
�Ω(C′[ ]q′ )

θ(si,β′,l′) | 〈βh, lh, t0,1 t̃h, qh 〉 I
∗ C ′[〈β′, l′, si t̃′, q′ 〉]

}
Γ0,h ⊆ Γ(t0,1,βh,lh)

Applying the induction hypothesis to t0,0 provides:

Γ0,0, . . . , xi :
∧

j∈J0,i

�m0,i,j θ0,i,j , . . . ` u0 : θ(t0,0,β,l)

{
�m0,i,j

θ0,i,j | j ∈ J0,i

}
⊆
{
�Ω(C′[ ]q′ )

θ(si,β′,l′) | 〈β, l, t0,0 t0,1 t1 · · · tn, q 〉 I
∗ C ′[〈β′, l′, si t̃′, q′ 〉]

}
Γ0,0 ⊆ Γ(t0,0,β,l)

We now have all we need to use the Application rule to type u0 u1. We
set

Γ0 = Γ0,0 ∪

( ⋃
h∈H

�mh Γ0,h

)
and for h ∈ H, i ∈ {1, . . . , k} , j ∈ Jh,i we set m′h,i,j = max(mh,i,j ,mh).
For i ∈ {1, . . . , k} and j ∈ J0,i, we set m′0,i,j = m0,i,j . Using the
Application rule on the sequents provided by the induction hypothesis
gives a proof of the sequent

Γ0, . . . , xi :
∧

h∈{0}∪H, j∈Jh,i

�m′h,i,j θh,i,j , . . . ` u : θ(t0,β,l)

Moreover:

Γ0 ⊆ Γ(t0,0,β,l) ∪

( ⋃
h∈H

�mhΓ(t0,1,βh,lh)

)
= Γ(t0,β,l)
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To complete the demonstration, remark that{
�m′h,i,j θ(h,i,j) | h ∈ {0} ]H, j ∈ Jh,i

}
consists only of elements �Ω(C′[ ]q′ )

θ(si,β′,l′) such that

〈β, l, t0,0 t0,1 t1 · · · tn, q 〉 I∗ C ′[〈β′, l′, si t̃′, q′ 〉 ] (7.4)

For h = 0, this is immediate: it is what the induction hypothesis pro-
vides. For the other values h ∈ H, this is obtained from the fact that
by definition of Γ(t0,β,l) every h corresponds to a leaf where t0,1 occurs
in head position, from which we can then apply the induction hypothesis
for the corresponding h. We obtain (7.4) as:

〈β, l, t0,0 t0,1 t1 · · · tn, q 〉 I∗ Ch[〈βh, lh, t0,1 t̃h, qh 〉] I∗ Ch[C ′[〈β′, l′, si t̃′, q′ 〉 ]]

and the fact that m′h,i,1 = Ω(Ch[C ′[ ]q′ ]qh) follows from Proposition 17.

From this technical lemma, we obtain the result which will guide Eve’s strategy
to answer Adam’s questions with appropriate typing environments:

Lemma 2. Denote R(F ) = λx̃. t, and suppose that

〈 ε, 0, S, q0 〉 I∗ C[ 〈β, l, F s̃, q 〉 ] I C[ 〈β, l + 1, t[x̃← s̃], q 〉 ]

Then there exists Γ ⊆ Γ(t[x̃←s̃],β,l+1) such that

Γ ` R(F ) : θ(F,β,l) :: κ(F )

in the type system Z(A).

Proof. Since t is of simple type o, θ(t[x̃←s̃],β,l+1) = q. An immediate application
of Lemma 1 gives a context Γ such that:

Γ, . . . , xi :
∧
j∈Ji

�mi,j θi,j , . . . ` t : q

{
�mi,j θi,j | j ∈ Ji

}
⊆
{
�Ω(C′[ ]q′ )

θ(si,β′,l′) | 〈β, l, t[x̃← s̃], q 〉 I∗ C ′[〈β′, l′, si t̃′, q′ 〉]
}

Γ ⊆ Γ(t[x̃←s̃],β,l+1)

By definition, θ(F,β,l) is of the form∧
j∈J′1

�m1,j
θ1,j → · · · →

∧
j∈J′n

�mn,j θn,j → q

where for every i we have Ji ⊆ J ′i , as J ′i contains by definition of θ(F,β,l) all the
types that si can have when it appears in head position.

To conclude, we apply n times the λ rule, using at each step the weakening
Ji ⊆ J ′i .
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Now that we defined contexts to be used as answers by Eve, and which do
not suffer from the defect leading to the loosing proof of Figure 7.1, we need
to relate the colors occurring in typing environments with the ones occurring
in paths of partial approximations of the accepting run-tree.

Lemma 3. Suppose that

〈 ε, 0, S, q0 〉 I∗ C[ 〈β, l, t, q 〉 ]

and that F : �m θ ∈ Γ(t,β,l). Then there exists C ′, β′, l′, t̃′, q′ such that

• 〈β, l, t, q 〉 I∗ C ′[〈β′, l′, F t̃′, q′ 〉]

• θ = θ(F,β′,l′)

• m = Ω(C ′[ ]q′)

Proof. We prove by induction on the structure of the term t a stronger ver-
sion of this property, where the only change is that we allow t to have ar-
guments: suppose that 〈 ε, 0, S, q0 〉 I∗ C[ 〈β, l, t ũ, q 〉 ] and that F :

�m θ ∈ Γ(t,β,l). Then there exists C ′, β′, l′, t̃′, q′ such that 〈β, l, t ũ, q 〉 I∗

C ′[〈β′, l′, F t̃′, q′ 〉] with m = Ω(C ′[ ]q′) and θ = θ(F,β′,l′).

• Since F : �m θ ∈ Γ(t,β,l), t can not be a terminal a ∈ Σ or a non-terminal
other than F , by definition of this typing environment.

• If t = F , since F is already in head position in t, the property holds for
C ′ = [ ]q, β′ = β, l′ = l. Note that we have m = Ω([ ]q) = ε.

• If t = t0 t1, we have by definition

Γ(t,β,l) = Γ(t0,β,l) ∪

(
k⋃
i=1

�mi Γ(t1,βk,li)

)
where for each i ∈ {1, . . . , k} we have that

〈β, l, t0 t1 ũ, q 〉 I∗ Ci[ 〈βi, li, t1 s̃i, qi 〉 ]

and mi = Ω(Ci[ ]qi). If F : �m θ ∈ Γ(t0,β,l), we can conclude by
using the induction hypothesis. Else there exists i ∈ {1, . . . , k} such that
F : �m θ ∈ �mi Γ(t1,βi,li). This implies the existence of a color m′ such
that F : �m′ θ ∈ Γ(t1,βi,li) with m = max(m′,mi).
Since 〈β, l, t0 t1 ũ, q 〉 I∗ Ci[ 〈βi, li, t1 s̃i, qi 〉 ], we have 〈 ε, 0, S, q0 〉 I∗
C[Ci[ 〈βi, li, t1 s̃i, qi 〉 ]] which together with F : �m′ θ ∈ Γ(t1,βi,li)

allows to use the induction hypothesis on t1. We obtain in this way
C ′i, β

′
i, l
′
i, t̃
′
i, q
′
i such that

〈βi, li, t1 s̃i, qi 〉 I∗ C ′i[ 〈β′i, l′i, F t̃′i, q
′
i 〉 ]

with m′ = Ω(C ′i[ ]q′i) and θ = θ(F,β′i,l
′
i)
. We conclude by setting C ′ =

Ci[C
′
i], β′ = β′i, l′ = l′i, t̃′ = t̃′i and q

′ = q′i.
Note that we indeed have

m = max(m′,mi) = max(Ci[ ]qi , C
′
i[ ]q′i) = Ω(Ci[C

′
i[ ]q′i ]qi

by Proposition 17.
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7.7 The completeness theorem

The idea behind Lemma 3 is that Eve plays typing environments included
in environments of the form Γ(t,β,l), so that Adam will answer by playing
typed non-terminals F : �m θ as in the lemma. The color played by this
interaction is therefore the one of the tree context that is built by the rewriting
sequence putting F in head position. Incrementally, the interaction between
Adam and Eve explores a branch of the winning run-tree Trun we fixed. When
the interaction is infinite, the explored branch of Trun is also infinite, due
to the productivity of the higher-order recursion scheme G. Each pair of a
move of Adam followed by a move by Eve constructs a finite tree context C[ ],
containing a finite part of the infinite branch of interest. The color played by
Adam is the maximal one encountered along this finite part of the branch –
excluding the color of the root but including the one of the hole, as we explain
in the proof of the next theorem. It follows that the color of the infinite play in
Adamic(G,A) is the same as the one of the infinite branch of Trun it explores.
Since Trun is winning, the corresponding play is winning as well. These are the
key ingredients of the completeness theorem.

Theorem 21 (Completeness). Let A be an alternating parity automaton and
G a higher-order recursion scheme. If A has a winning execution over 〈 G 〉,
then Eve has a winning strategy in Adamic(G,A).

Proof. Since A has a winning run-tree Trun over 〈 G 〉, there is a fair rewriting
sequence as (7.1):

T0 = 〈 ε, 0, S, qo 〉 I T1 I T2 I · · · (7.5)

computing it. We construct a winning strategy W for Eve in Adamic(G,A)
using this sequence. The idea is that Eve will only provide non-terminals that
occur in head position at some point of the reduction, that is, non-terminals
which will actually be reduced. Then, when Adam picks one of these non-
terminals, Eve moves in the reduction sequence to the point where it occurs in
head position, and computes a new typing context from there. The sequence
of Adam’s moves will iteratively explore a branch of Trun.

On the initial vertex
S : �ε q0

Eve has to move by picking a typing environment Γ such that

Γ ` R(S) : q0 :: o (7.6)

is provable in Z(A). We obtain this context using Lemma 2, applied to

〈 ε, 0, S, q0 〉 I0 〈 ε, 0, S, q0 〉 I 〈 ε, 1, R(S), q0 〉

which provides Γ ⊆ Γ(R(S),ε,1) satisfying (7.6). We denote Γ as Γ[R(S),ε,1].
In the sequel of the play, Eve will keep answering Adam using contexts

provided by Lemma 2. In order to keep track of them, we label explicitly the
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typing contexts played by Eve as Γ[t,β,l]. We will always have, by construction,
that Γ[t,β,l] ⊆ Γ(t,β,l).

Consider now that Eve played a context Γ[t,β,l], and that Adam answered
by picking �m θ ∈ Γ[t,β,l]. By Lemma 3, there exists C ′, β′, l′, s̃′ and q′

associated with a reduction sequence putting F in head position from the leaf
identified by β and l:

〈β, l, t, qt 〉 I∗ C ′[ 〈β′, l′, F s̃′, q′ 〉 ] I C ′[ 〈β′, l′ + 1, tF [x̃← s̃′], q′ 〉 ]

with Ω(C ′[ ]q′) = m, θ = θ(F,β′,l′) and R(F ) = λx̃. tF . We can now apply
Lemma 2 and obtain a typing context Γ′ such that

• Γ′ ` R(F ) : θ(F,β′,l′)

• and Γ′ ⊆ Γ(tF [x̃←s̃′],β′,l′+1)

We set Γ[tF [x̃←s̃′],β′,l′+1] = Γ′ and define it as Eve’s answer to Adam’s move
picking F : �m θ. Note that the strategyW we define here is not memoryless,
as we use β, l and t from Eve’s previous move to define its next one. However,
the existence of a winning strategy for a player in a parity game implies the
existence of a memoryless such strategy.

By construction, W is winning for Eve on finite plays, as it always provide
an answer to Adam’s moves. It remains to prove that it is satisfies the parity
condition on infinite plays. Let us consider such an infinite play, where Eve
plays according to the strategy W:

(F0 : �m0
θ0) Γ

[t0,l0,β0]
0 (F1 : �m1

θ1) Γ
[t1,l1,β1]
1 · · · (7.7)

where by construction F0 : �m0 θ0 is S : �ε q0 and Γ
[t0,l0,β0]
0 is Γ[R(S),ε,1].

The definition of W induces a factorization of the fair rewriting sequence (7.5)
as

〈 ε, 0, S, q0 〉 I 〈 ε, 1, R(S), q0 〉
I∗ C1[ 〈β1, l1 − 1, F1 s̃1, q1 〉 ] I C1[ 〈β1, l1, t1, q1 〉 ]
I∗ C1[C2[ 〈β2, l2 − 1, F2 s̃2, q2 〉 ]] I C1[C2[ 〈β2, l2, t2, q2 〉 ]]
I∗ · · ·

with Ω (Ci[ ]qi) = mi. Note that since the rewriting sequence (7.5) is fair
and generates Trun, it does not only explore a branch, but computes the whole
tree. However, the interaction of Adam with Eve only plays colors from a given
infinite branch of Trun, characterized by the holes occurring in the increasing
sequence

[ ]q0 , C1[ ]q1 , C1[C2[ ]q2 ] · · · (7.8)

Since Trun is winning, the maximal color seen infinitely often along this branch
is even. Note that since the branch of Trun associated with the sequence (7.8)
is infinite, there are infinitely many non-empty contexts Cj0 , Cj1 , . . ., and

Cj0 [Cj1 [Cj2 [· · · ]]]

builds the infinite branch of interest – note, however, that the resulting Σcomp-
labeled unranked tree is only a subtree of Trun, as we removed computation
steps generating other infinite branches.
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Note that the integers i such that mi = ε are precisely the ones such that
∃k jk < i < jk+1: they correspond to computation steps which do not increase
the branch of interest. The maximal color seen infinitely often on the sequence
(mi)i∈N coincides with the one of the extracted sequence (mjk)k∈N, as we only
remove neutral colors ε. Recall now the discussion following Proposition 17:

• mj0 is the maximal color seen from the root of Cj0 (excluded) to its hole
[ ]qj0 (included),

• mj1 is the maximal color seen from the root of Cj1 (excluded, but taken
into account in mj0 as the color of the hole we plug the root of Cj1 in)
to its hole [ ]qj1 (included),

• and so on.

To summarize, (mjk)k∈N is a sequence of maximums of finite parts of the
infinite branch of interest, each color occurring along this infinite branch being
counted exactly once, except for the root of the tree which is dismissed. As
a consequence, the maximal color appearing infinitely often in the sequence
(mi)i∈N is the color of the infinite branch of interest. This color is even since
Trun is winning. Since (mi)i∈N is the sequence of colors appearing in the play
(7.7), this play is winning. By considering all such plays, we obtain that W is
a winning strategy for Eve.



Chapter 8

Soundness of the type system

In this chapter, we adapt the soundness part of the original proof of Kobayashi
and Ong [KO] to our new, modal coloring policy. We prove the following
equivalent formulation of the soundness part of Theorem 19:

Let A be an alternating parity automaton and G be a productive
higher-order recursion scheme. If Eve has a winning strategy W in
Adamic(G,A), then A has a winning execution over 〈 G 〉.

As in the completeness proof, it is more convenient to use the parity game
Adamic(G,A) to prove the statement, and to use the infinitary type system
Zfix(G,A) to explain informally the idea of the proof. In Zfix(G,A), the proof
can be understood as an infinitary rewriting process on derivations, using sub-
ject reduction and non-terminal unfoldings to incrementally compute from a
proof of

S :
∧
{1}

�ε q :: o ` S : q :: o (8.1)

a proof of
∅ ` 〈 G 〉 : q :: o (8.2)

which corresponds to a run-tree of A over 〈 G 〉, and which only consists of
Application and δ rules. We then have to prove that this run-tree is winning
for the parity condition – or, equivalently, that the derivation we computed
of the sequent (8.2) is winning. We thus have to prove that the color of any
infinite branch of this derivation is even, by relating it to an infinite branch of
the winning derivation tree proving (8.1).

The proof of soundness starts in §8.1 with a series of preliminary definitions.
We then prove in §8.2 a subject reduction property for the intersection type
system Z(A). This subject reduction property enables us to define in §8.3 a
rewriting system (with rewriting relation noted B) parametrized by a winning
strategy for Eve in Adamic(G,A). The remaining of the proof of soundness
consists in proving that B computes a winning run-tree of A over the infinite
tree 〈 G 〉. The main ingredients of the proof are explained in §8.4. We start
by establishing in §8.5 a progress lemma for the rewriting relation B. We
then establish in §8.6 a « fair production lemma », stating that fair rewriting
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sequences for B generate a run-tree of A over 〈 G 〉, and not just a partial run-
tree. We finally obtain in §8.7 the soundness theorem by showing that this run-
tree is moreover winning. The proof of this theorem relies on a crucial lemma,
called the « infinite ancestor lemma », which states that every infinite branch
of the run-tree comes from an infinite play of the same color in Adamic(G,A),
in which Eve follows her winning strategy W. We conclude the chapter by a
proof of a technical lemma, necessary to establish the infinite ancestor lemma.

8.1 Preliminary definitions

Following [KO], we prove soundness in Adamic(G,A) rather than in Zfix(G,A),
as it is technically more convenient. Let A = 〈Σ, Q, δ, q0, Ω〉 be an alternating
parity automaton and G = 〈Σ,N ,R, S〉 be a productive higher-order recursion
scheme with N = {F1, . . . , Fn}. Let also W be Eve’s winning strategy; we
can assume it to be memoryless since we consider a parity game. Therefore,
W maps nodes F : �m θ to typing environments we denote Γ(F :�m θ).

We define a set of labels Σsound and a rewrite relation B on Σsound -labeled
unranked trees which models the effect of the normalization of G on the typ-
ing derivations of Zfix(G,A). The set of labels Σsound contains more than
just terms and states, in order to ease the localization of occurrences of non-
terminals during the rewriting process, and to keep track of the colors appearing
during the construction of the run-tree.

Let n be the maximal arity of the symbols of the signature Σ. The set of
labels Σsound contains the symbols:

• 〈α, q 〉, where α ∈ {1, . . . , n} and q ∈ Q. These nodes correspond to
nodes of the run-tree generated by the rewriting process.

• 〈α, l, Λ, Γ ` t : q 〉, where α ∈ {1, . . . , n}∗ is the node computed by the
head reduction of t, l is a natural number counting the rewriting steps,
Λ : N→ Col is a partial function mapping some of the rewriting steps to
the maximal color seen since them, and Γ ` t : q is a sequent provable
in Z(A). Note that this sequent comes implicitly together with a proof,
a fact which is not explicited in [KO].

Σsound -labeled unranked trees will be used to compute finite prefixes of the
run-tree we want to generate. The inner nodes will be of the form 〈α, q 〉, and
the leaves can be of either shapes:

• a leaf of the form 〈α, q 〉 corresponds to a leaf of the run-tree, from which
no further computation will be performed,

• and a leaf of the form 〈α, l, Λ, Γ ` t : q 〉 is to generate the label of the
node α by head normalization of t; the information contained in the proof
of Γ ` t : q will allow to determine which transition function should be
applied once the head symbol is computed, but also to carry on coloring
information.

For a Σsound -labeled unranked tree T , we define the Σsound -labeled unranked
tree T ] by relabeling the leaves of T of the form 〈α, l, Λ, Γ ` t : q 〉 to 〈α, q 〉.
This corresponds to the finite run-tree prefix computed by T .
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Consider a type judgment of the form Γ ` F t̃ : q occurring in a Σsound -label.
As we said, it implicitly comes together with a proof of its validity, which is of
the form:

F : �ε θ ` F : θ

...
...App

Γ ` F t̃ : q

We sometimes write F θ to indicate that F is used with this refinement type in
the proof.

8.2 Subject reduction

Before we define the rewriting relation on Σsound -trees in §8.3, we prove a
crucial lemma of subject reduction:

Lemma 4 (Subject reduction). If Γ ` (λx. t0) t1 : θ :: κ in Z(A), then
there exists Γ′ ⊆ Γ such that Γ′ ` t0[x← t1] : θ :: κ.

The proof of this lemma is a consequence of the following result:

Lemma 5. If Γ0, x :
∧
i∈I �mi θi ` t0 : θ and ∀i ∈ I Γi ` t : θi holds

in Z(A), then Γ0 ∪
(⋃

i∈I �mi Γi
)
` t0[x← t] : θ holds in Z(A) as well.

Proof. We proceed by induction on the structure of the proof of the sequent
Γ0, x :

∧
i∈I �mi θi ` t0 : θ.

• If the last rule is δ, then t0 ∈ Σ is a terminal: x does not appear in
it, so that I = ∅ and t0[x ← t] = t0. The result therefore holds, by
considering the same proof.

• If the last rule is an Axiom applied to a symbol y ∈ V ∪N other than x,
then t0[x← t] = t0 and I = ∅: again, the result follows immediately.

• If the last rule is an Axiom applied to the variable x, then we have:

x :
∧
{1} �ε θ ` x : θ

so that t0[x ← t] = t, Γ0 = ∅, m1 = ε, θ1 = θ. By hypothesis,
we have a proof of Γ1 ` t : θ1 from which we deduce the result, as
Γ0 ∪�ε Γ1 = Γ1.

• If the last rule used is a λ, then t0 = λy. t1. We suppose that the term
is α-renamed so that x 6= y and that y does not occur in t. So, we have
θ =

(∧
j∈J �nj θ

′
j

)
→ θ′, and

...
Γ0, y :

∧
j∈J′ �nj θ

′
j , x :

∧
i∈I �mi θi ` t1 : θ′ J ′ ⊆ J

Γ0, x :
∧
i∈I �mi θi ` λy. t1 :

(∧
j∈J �nj θ

′
j

)
→ θ′

Applying the induction hypothesis gives

Γ0 ∪
⋃
i∈I

�mi Γi, y :
∧
j∈J′

�nj θ
′
j ` t1[x← t] : θ′
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from which we deduce by a rule λ

...
Γ0 ∪

⋃
i∈I �mi Γi, y :

∧
j∈J′ �nj θ

′
j ` t1[x← t] : θ′ J ′ ⊆ J

Γ0 ∪
⋃
i∈I �mi Γi ` (λy. t1)[x← t] :

(∧
j∈J �nj θ

′
j

)
→ θ′

• If the last rule is an Application, t0 = t1 t2 and the proof is of the shape

...
Γ0,0, x :

∧
i∈I,m∈S0,i

�m θi ` t1 :
∧
j∈J �nj θ

′
j → θ

...
Γ0,j , x :

∧
i∈I,m∈Sj,i �m θi ` t2 : θ′j for each j ∈ J

Γ0, x :
∧
i∈I �mi θi ` t1 t2 : θ

where Γ0 = Γ0,0 ∪
⋃
j∈J �nj Γ0,j and

for each i ∈ I, {mi} = S0,i ∪
⋃
j∈J
{max(m,nj) | m ∈ Sj,i} (8.3)

Applying the induction hypothesis, we obtain

Γ0,0 ∪
⋃

i∈I,m∈S0,i

�m Γi ` t1[x← t] :
∧
j∈J

�nj θ
′
j → θ

for each j ∈ J, Γ0,j ∪
⋃

i∈I,m∈Sj,i

�m Γi ` t2[x← t] : θ′j

which combine using the Application rule to a proof of

Γ0,0 ∪
⋃

i∈I,m∈S0,i

�m Γi ∪

⋃
j∈J

�nj

Γ0,j ∪
⋃

i∈I,m∈Sj,i

�m Γi

 ` t0[x← t] : θ

To conclude, we need to prove that the context of this sequent is equal
to Γ0 ∪

⋃
i∈I �mi Γi. First of all, notice that it rewrites to

Γ0,0 ∪
⋃
j∈J

�nj Γ0,j ∪
⋃

i∈I,m∈S0,i

�m Γi ∪

⋃
j∈J

⋃
i∈I,m∈Sj,i

�max(m,nj) Γi


which is equal to Γ0 ∪

⋃
i∈I �mi Γi by definition of Γ0 and by (8.3).

Proof of Lemma 4. Suppose that Γ ` (λx. t0) t1 : θ :: κ in Z(A), then
there exists a derivation of the shape:

...
Γ0, x :

∧
i∈I �mi θi ` t0 : θ I ⊆ J

Γ0 ` λx. t0 :
(∧

i∈J �mi θi
)
→ θ

...
Γi ` t1 : θi (i ∈ J)

Γ0 ∪
⋃
i∈J �mi Γi ` (λx.t0) t1 : θ
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We apply Lemma 5 to Γ0, x :
∧
i∈I �mi θi ` t0 : θ and obtain the desired

context
Γ′ = Γ0 ∪

⋃
i∈I

�mi Γi

8.3 Definition of the rewriting system

We define the rewriting system which will compute a run-tree of A over 〈 G 〉.
The initial tree of the rewriting sequence will be

〈 ε, 1, {0 7→ ε} , S0 :
∧
{1}

�ε q0 ` S0 : q0 〉

meaning that to compute the run-tree, we start

• by computing the label of its root ε,

• that it is the first rewriting step, identified by the integer 1,

• that the maximal color seen from the rewriting step 0 (introduced for
technical convenience, and to be understood as the step which introduces
the start symbol S) is ε,

• and that the label of the node will be computed by head reduction of S,
currently in state q0.

Note that we write S0 to indicate that S was introduced by the rewriting
step 0 (that is, the initial one). We will usually annotate non-terminals with
the label of the rewriting step introducing them: F l will identify an occurrence
of F introduced by a rule rewriting at step l, as we shall see more precisely in
the definition of B. This annotation is crucial in Lemma 8.
We then define by induction the head rewriting relation B on Σsound -labeled
unranked trees:

1. If F ∈ N is a non-terminal which rewrites to R(F ) = λx1 . . . λxn. t
′,

such that Γ ` F l
′,θ t̃ : q holds in Z(A) and that Γ(F :�Λ(l′) θ)

is defined,
then

〈α, l, Λ, Γ ` F l
′,θ t̃ : q 〉 B 〈α, l+1, Λ{l 7→ ε}, Γ′ ` ρ(t′)[x̃← t̃] : q 〉

Here ρ(t′) is the term obtained by renaming each non-terminal Fi occur-
ring in t as F li , expliciting in this way the rewriting step which created the
occurrence of this non-terminal. The context Γ′ is computed as follows:
we start from the proof π of

F l
′

: �ε θ ` F l
′

: θ

...
...App

Γ ` F l
′,θ t̃ : q
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Since we assumed Γ(F :�Λ(l′) θ)
to be defined, there is a derivation of

Γ(F :�Λ(l′) θ)
` R(F ) : θ

We apply it the renaming induced by ρ, which labels with l every non-
terminal occurring in this proof. Then, we substitute the Axiom leaf

F l
′

: �ε θ ` F l
′

: θ

in π with this proof of ρ(Γ(F :�Λ(l′) θ)
) ` ρ(R(F )) : θ. The resulting

derivation π′ is a proof of

Γ1 ∪ ρ(Γ(F :�Λ(l′) θ)
) ` ρ(R(F )) t̃ : θ

where Γ1 ∪ {F : �ε θ} = Γ — notice that due to idempotency, F : �ε θ
may either disappear from the context if there was only one Axiom leaf
typing F with �ε θ, or stay if there were several. By application of the
subject reduction lemma (Lemma 4), there exists Γ′ ⊆ Γ1]ρ(Γ(F :�Λ(l′) θ)

)

such that Γ′ ` ρ(t′)[x̃ ← t̃]. This provides the typing context Γ′ intro-
duced by the reduction.

2. We now have to deal with the case in which the typing judgment occurring
in the leaf of interest types a term which contains a terminal as its head
symbol. In this case, the leaf contains Γ ` a t1 · · · tn : q, and the
derivation it implicitly comes together with derives it from a set of proofs
of conclusions Γi,j ` ti : qi,j , such that

{(i, qi,j) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δ(q, a).

In this case, defining �m Λ as the partial function of same domain as Λ,
and whose values on this domain are given by

(�m Λ) = max(Λ(l), m)

the relation B rewrites

〈α, l, Λ, Γ ` a t1 · · · tn : q 〉

to
〈α, q 〉

〈αn, l + 1, �Ω(qn,kn ) Λ, Γn,kn ` tn : qn,kn 〉· · ·〈α1, l + 1, �Ω(q1,1) Λ, Γ1,1 ` t1 : q1,1 〉

3. Defining tree contexts – as in the completeness proof – by the grammar

C ::= [ ] | 〈α, q 〉 T1 · · ·Ti−1 C Ti+1 · · ·Tk

where the Tj are Σsound -labeled unranked trees and [ ] is a distinguished
hole symbol, we extend the rewriting relation to contexts: if t B t′, then
for any context C we have C[t] B C[t′].
Note that this does not break the fact that the rewriting is restricted to
terms occurring in head position, due to the structure of the trees and
contexts we consider.
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We define the color of a tree context just as in the completeness proof:
writing [ ]q for a hole which is to receive either a tree of root 〈α, q 〉, or a leaf
〈α, l, Λ, Γ ` t : q 〉, we define the color Ω(C[ ]q) of the context C[ ]q in the
following way:

• if C[ ]q = [ ]q, then Ω(C[ ]q) = ε,

• if C[ ]q = 〈α, q′′ 〉 T1 · · · Ti−1 [C ′[ ]q]q′ Ti+1 · · · Tn, then

Ω(C[ ]q) = max (Ω(q′), Ω (C ′[ ]q))

Note that in the case where C ′[ ]q = [ ]q we have q = q′ and Ω(C[ ]q) =
Ω(q).

For more discussion about this definition and its comparison with the orig-
inal one of Kobayashi and Ong, see p.151.

8.4 Overview of the soundness proof

Now that we have established the subject reduction property of the type system
Z(A), and that we have used it to define the rewriting relation B over Σsound -
labeled trees, we give a short overview of the remaining parts of the soundness
proof. The guiding idea is to apply the rewriting relation B starting from the
initial tree

〈 ε, 1, {0 7→ ε} , S0 :
∧
{1}

�ε q0 ` S0 : q0 〉 (8.4)

We compute in this way a possibly infinite Σsound -labeled tree T . Our goal is
to prove that this tree T is a winning run-tree of A over 〈 G 〉. We proceed in
three steps.

Progress. We prove that the rewriting relation B can always progress, so
that we can consider maximal rewriting sequences. In order to establish the
progress lemma (Lemma 6), it suffices to show that Eve’s winning strategy W
always enables us to define the context Γ(F :�Λ(l′) θ)

necessary to the first case
of the definition of B. The proof of the progress lemma (Lemma 6) relies on
three technical lemmas: Lemmas 7, 8 and 9. We devote §8.5 to the proof of
the progress lemma and of its three companions. As we will see, the proof of
the progress lemma contains an interesting technique relating on the one hand
the finite plays in Adamic(G,A) where Eve follows W, and in the other hand
the computation of finite prefixes of branches of T . More specifically, consider
the tree

C[ 〈α, l, Λ, Γ ` t : q 〉 ]
obtained after a finite number of applications of the rewriting relation B, start-
ing from the initial tree (8.4):

〈 ε, 1, {0 7→ ε} , S0 :
∧
{1}

�ε q0 ` S0 : q0 〉 B∗ C[ 〈α, l, Λ, Γ ` t : q 〉 ]

The proof of the progress lemma contains a construction relating the finite
branch leading from the root of C[ ] to its hole [ ] filled with the leaf

〈α, l, Λ, Γ ` t : q 〉
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with a finite play where Eve follows her winning strategy W and where Adam
plays an appropriate sequence of non-terminals. We will see this idea reappear
a bit later, when we prove the infinite ancestor lemma.

Fair production. Consider a maximal fair rewriting sequence

T0 = 〈 ε, 1, {0 7→ ε} , S0 :
∧
{1}

�ε q0 ` S0 : q0 〉 B T1 B T2 B · · ·

This sequence computes a Σsound -labeled tree T =
∨
i∈N T ]i . The « fair pro-

duction lemma » (Lemma 10) proves that this tree is a run-tree of A over 〈 G 〉,
rather than simply a partial run-tree. This fundamental property is proved in
§8.6.

The infinite ancestor lemma. The last ingredient necessary to the proof of
the soundness theorem (Theorem 22) is the infinite ancestor lemma (Lemma 12),
which states that every infinite branch of the run-tree T generated by the
rewriting relation B has the same color as an infinite play of Adamic(G,A)
where Eve follows her winning strategy W. Since W is winning for Eve, it fol-
lows that the run-tree T is winning (Corollary 3). The infinite ancestor lemma
is established in §8.7, together with the soundness theorem (Theorem 22). The
idea of the proof of the infinite ancestor lemma is to extend to the infinitary
case the connection (mentioned above) appearing in the proof of the progress
lemma between finite plays of Adamic(G,A) and finite prefixes of branches
of T . This previous connection shows that any finite branch of T is com-
puted by a rewriting sequence for B which unfolds the non-terminals played
by Adam (as well as other intermediate non-terminals). The definition of the
game Adamic(G,A) implies moreover that when Adam plays a non-terminal F ,
he should play his next move by picking a non-terminal G introduced by the
unfolding F 7→ R(F ). In order to relate an infinite branch b of the run-tree
T with an infinite play of Adamic(G,A), we must therefore ensure that there
exists an infinite sequence of non-terminals

S = F b0 , F
b
1 , F

b
2 , . . .

having the following property: the unfolding of F bi during the rewriting by B
creates the occurrence F bi+1. We should moreover require that this sequence of
non-terminals computes the branch b in the following sense: for every integer
i, the tree context Cbi [ ] generated by the rewriting relation B putting the
occurrence F bi in head position:

〈 ε, 1, {0 7→ ε} , S0 :
∧
{1}

�ε q0 ` S0 : q0 〉 B∗ Cbi [ 〈α, l, Λ, Γ ` F bi : q 〉 ]

is such that the path from the root of Cbi [ ] to its hole is a finite prefix of the
infinite branch b of the run-tree T . The existence of such a sequence of non-
terminals is stated by a technical lemma (Lemma 11. As the proof of Lemma 11
is rather long, it is presented in a separate section (§8.8). This lemma then
enables us to relate each infinite branch of the run-tree T with an infinite play
of Adamic(G,A) where Eve follows her winning strategyW. Since this strategy
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is winning, all the infinite branches of T also are. This result is stated in §8.7
by Lemma 12, whose proof relates infinite branches of T with infinite plays
of Adamic(G,A) where Eve follows the winning strategy W. The soundness
theorem (Theorem 22) follows immediately.

8.5 Progress lemma

The « progress » lemma for the rewriting relation B is stated as follows:

Lemma 6 (Progress). Suppose that

〈 ε, 1, {0 7→ ε} , S0 :
∧
{1}

�ε q0 ` S0 : q0 〉 B∗ C[ 〈α, l, Λ, Γ ` t : q 〉 ]

Then there exists T such that

〈α, l, Λ, Γ ` t : q 〉 B T

It requires some companion lemmas:

Lemma 7. Suppose that

〈 ε, 1, {0 7→ ε} , S0 :
∧
{1}

�ε q0 ` S0 : q0 〉 B C[ 〈α, l, Λ, Γ ` t : q 〉 ]

then Γ ` t : q holds in Z(A).

Proof. Easy induction on the length of the rewrite sequence, coming from the
fact that by definition the case (1) of the definition of B introduces appropriate
typing contexts obtained by subject reduction, and that the case (2) introduces
judgments which already hold.

The following lemma formalizes the discussion of the beginning of §6.3: the
coloring annotation of an occurrence of a non-terminal in a context is precisely
the maximal color seen, after normalization, from the root to the leaf where
this occurrence is in head position.

Lemma 8. Suppose that

〈α0, l0, Λ0, Γ0 ` s0 : q0 〉 B∗ C[ 〈α, l, Λ, Γ ` F l
′,θ t̃ : q 〉 ]

where F is not introduced by the intermediate steps – in other words, the integer
l′ labeling the occurrence of F of interest is strictly lesser than l0. Then F :
�Ω(C[ ]q) θ ∈ Γ0.

Proof. The proof is by induction on the length of the reduction sequence

〈α0, l0, Λ0, Γ0 ` s0 : q0 〉 B∗ C[ 〈α, l, Λ, Γ ` F θ t̃ : q 〉 ]

If it is 0, then q = q0, Γ0 = Γ and C[ ]q = [ ]q. The proof of Γ0 ` F θ t̃ : q
must use an Axiom leaf

F :
∧
{1}

�ε θ ` F : θ
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to type F , together with applications of t̃ which do not update the color
of F : �ε θ as it is in head position. So we have F : �ε θ ∈ Γ0, with
ε = Ω(C[ ]q) = Ω([ ]q).

Let us now consider the inductive step, distinguishing between the cases (1)
and (2) of the definition of B.

1. Suppose the first rewrite step is of the form (1)

〈α0, l0, Λ0, Γ0 ` F l
′

k t̃ : q0 〉 B 〈α0, l0+1, Λ′, Γ′ ` ρ(t′)[x̃← t̃] : q0 〉

with R(Fk) = λx̃. t′ and ρ the relabeling operation of non-terminals
Fi to F l0i . Since F is not introduced by intermediate reduction steps,
it is not labeled with l0. By the induction hypothesis, we obtain that
F : �Ω(C[ ]q) θ ∈ Γ′ \

{
Gl0 |G ∈ N

}
. The case (1) in the definition of

B implies that Γ′ \
{
Gl0 |G ∈ N

}
⊆ Γ0, so that F : �Ω(C[ ]q) θ ∈ Γ0.

Since the first step of rewriting we considered did not increase the context
C[ ]q, the result holds.

2. If the first rewrite step is of the form (2), we have

〈α0, l0, Λ0, Γ0 ` a t1 · · · tn : q0 〉 B 〈α0, q0 〉
(
· · · 〈α0i, l0 + 1, �qi,j Λ0, Γi,j ` ti : qi,j 〉 · · ·

)
for i ∈ {1, . . . , n}, j ∈ {1, . . . , ki}. So there exists a family Ti,j of Σsound -
labeled trees such that

C[ 〈α, l, Λ, Γ ` F θ t̃ : q 〉 ] = 〈α0, q0 〉 T1,1 · · · Tn,kn

Moreover, there exists precisely one such couple (i, j) such that Ti,j =
C ′[ 〈α, l, Λ, Γ ` F θ t̃ : q 〉 ], and by definition of B we have that

〈α0i, l0+1, �qi,j Λ0, Γi,j ` ti : qi,j 〉 B∗ C ′[ 〈α, l, Λ, Γ ` F θ t̃ : q 〉 ]

Note that

C[ ]q = 〈α0, q0 〉 T1,1 · · · [C ′[ ]q]qi,j · · · Tn,kn

so that Ω(C[ ]q) = max(Ω(qi,j),Ω(C ′[ ]q)).
By induction hypothesis, F : �Ω(C′[ ]q) θ ∈ Γi,j . In the derivation of
Γ0 ` a t1 · · · tn : q0, the use of the Application rule colors Γi,j with
Ω(qi,j). Since Ω(C[ ]q) = max(Ω(qi,j),Ω(C ′[ ]q)), F : �Ω(C[ ]q) θ ∈ Γ0,
so that the result holds.

The next lemma clarifies the technical rôle of the partial function Λ occurring
in leaves of the second form. Recall that from a leaf

〈α0, l0, Λ0, Γ0 ` F t̃ : q0 〉

the reduction relation B will use the case (1) to expand F , and the newly-
introduced non-terminals will be labeled with l0. The purpose of Λ is to store
the maximal color seen since every such introduction of non-terminals.
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Lemma 9. If 〈α0, l0, Λ0, Γ0 ` F t̃ : q0 〉 B+ C[ 〈α, l, Λ, Γ ` s : q 〉 ],
then Λ(l0) = Ω(C[ ]q).

Proof. The proof is by induction on the length of the reduction sequence. For
the base case, the rewriting is

〈α0, l0, Λ0, Γ0 ` F t̃ : q0 〉 B 〈α0, l0 + 1, Λ, Γ′ ` ρ(F )[x̃← t̃] : q0 〉

with Λ = Λ0{l0 7→ ε}, q = q0 and C = [ ]q0 , such that Λ(l0) = ε = Ω([ ]q0).

For the inductive step, we write

〈α0, l0, Λ0, Γ0 ` F t̃ : q0 〉 B+ C ′[ 〈α′, l′, Λ′, Γ′ ` s′ : q′ 〉 ]
B C[ 〈α, l, Λ, Γ ` s : q 〉 ]

and distinguish two cases, depending on whether the last step of the reduction
comes from the case (1) or (2) of the definition of B:

• if it comes from (1), then C = C ′, q = q′ and Λ = Λ′{l′ 7→ ε}. The
induction hypothesis gives Λ′(l0) = Ω(C ′[ ]q), from which we deduce that
Λ(l0) = Ω(C[ ]q).

• if it comes from (2), then C[ ]q = C ′[ 〈α′, q′〉 · · · [ ]q · · · ]q′ , and Λ =
�Ω(q) Λ′. By induction hypothesis, Λ′(l0) = Ω(C ′[ ]q′). By composition
of contexts (Proposition 17), we obtain

Λ(l0) = max(Λ′(l0), Ω(q)) = max (Ω (C ′[ ]q′)), Ω (〈α′, q′〉 · · · [ ]q · · · )) = Ω(C[ ]q)

from which we conclude.

Proof of Lemma 6. Suppose that

〈 ε, 1, {0 7→ ε} , S0 :
∧
{1}

�ε q0 ` S0 : q0 〉 B∗ C[ 〈α, l, Λ, Γ ` t : q 〉 ] (8.5)

Then by Lemma 7 we have that Γ ` t : q holds in Z(A). If t = a t1 · · · tn is
in head normal form, then we can apply the case (2) of the definition of B and
obtain T as required.

Otherwise, t = F l
′,θ
i s̃, and our aim is to apply the case (1) of the definition

of B. However, this requires to ensure that the context Γ(Fi :�Λ(l′) θ)
is defined.

The goal is to extract from the rewriting sequence (8.5) a play in Adamic(G,A)
in which Eve conforms to W, and in which Adam raises the question Fi :
�Λ(l′) θ.

The rewriting sequence (8.5) factors as

〈 ε, 1, {0 7→ ε} , S0 :
∧
{1} �ε q0 ` S0 : q0 〉

B∗ C1[ 〈α1, l1, Λ1, Γ1 ` F l0,θ1i1
t̃1 : q1 〉 ]

B∗ C1[C2[ 〈α2, l2, Λ2, Γ2 ` F l1,θ2i2
t̃2 : q2 〉 ]]

B∗ C1[C2[· · ·Cn[ 〈αn, ln, Λn, Γn ` F
ln−1,θn
in

t̃n : qn 〉 ] · · · ]
= C[ 〈α, l, Λ, Γ ` F l

′,θ
i s̃ : q 〉 ]
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with l0 = 1 and C = C1[C2[· · · [Cn] · · · ]]. Note that in this factorization of the
rewriting sequence (8.5) we focus at each step on a non-terminal which occurs
in head position and has been introduced by the previous one. The idea is
that this computes a finite prefix of a branch of the run-tree we want to build,
and that we can see this process as an interaction between Adam and Eve, the
former’s moves corresponding to the exploration of this branch. We can indeed
extract from this sequence of rewritings the partial play of Adamic(G,A)

(S : �ε q0) Γ(S :�ε q0)

(
Fi1 : �Ω(C1[ ]q1 ) θ1

)
Γ(

Fi1 :�Ω(C1[ ]q1
) θ1

) · · · (Fin : �Ω(Cn[ ]qn ) θn
)

as follows: for every k, the reduction

〈αk, lk, Λk, Γk ` F
lk−1,θk
ik

t̃k : qk 〉 B∗ Ck+1[ 〈αk+1, lk+1, Λk+1, Γk+1 ` F
lk,θk+1

ik+1
t̃k+1 : qk+1 〉 ]

factors as

〈αk, lk, Λk, Γk ` F
lk−1,θk
ik

t̃k : qk 〉
B 〈αk, lk + 1, Λk{lk 7→ ε}, Γ′k ` ρ(t′)[x̃← t̃k] : qk 〉
B∗ Ck+1[ 〈αk+1, lk+1, Λk+1, Γk+1 ` F

lk,θk+1

ik+1
t̃k+1 : qk+1 〉 ]

where ρ relabels a non-terminal G to Glk , and where R(Fik) = λx̃. t′. By
definition of B, the context Γ(Fik :�Λk(lk−1) θk) is well-defined, and

Γ′k ⊆ Γk ∪ ρ
(

Γ(Fik :�Λk(lk−1) θk)

)
Lemma 8 then implies that F lkik+1

: �Ck+1[ ]qk+1
θk+1 ∈ Γ′k. Since F lkik+1

was
introduced at the step lk, it can not belong to Γk, and we have

Fik+1
: �Ck+1[ ]qk+1

θk+1 ∈ Γ(Fik :�Λk(lk−1) θk) (8.6)

Moreover, by Lemma 9, Λk(lk−1) = Ω(Ck[ ]qk). This means that, for every
k < n and every node

(
Fik : �Ω(Ck[ ]qk ) θk

)
, and starting for k = 0 from(

F0 : �Ω(C0[ ]q0 ) θ0

)
= (S : �ε q0)

Eve can answer with Γ(
Fik :�Ω(Ck[ ]qk

) θk

), from which Adam can play Fik+1
:

�Ck+1[ ]qk+1
θk+1 since (8.6) holds.

As Eve follows her winning strategy W in this partial play, she can answer to(
Fin : �Ω(Cn[ ]qn ) θn

)
with

Γ(Fin :�Λ(l′) θ)
= W

(
Fin : �Ω(Cn[ ]qn ) θn

)
otherwise she would loose on this finite play. So Γ(Fin :�Λ(l′) θ)

is well-defined,
and the case (1) of the definition of the rewrite rule B can be applied to
t = F l

′,θ
i s̃.
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8.6 Fair production lemma

Now that we proved that the rewriting relation B does not get stuck on leaves
of the form

〈α, l, Λ, Γ ` t : q 〉
we can show that maximal fair1 rewriting sequences compute a run-tree of A
over 〈 G 〉. Recall from Definition 20 that we can consider ranked trees over a
signature as a domain, and therefore take the supremum

∨
of a directed family

of Σ-labeled ranked trees. The set of Σsound -labeled unranked trees is a domain
as well when we consider the prefix order:

t 4 t′ ⇐⇒ Dom(t) ⊆ Dom(t′) and α ∈ Dom(t)⇒ t(α) = t′(α)

Consider a family (Tj)j∈J of Σsound -labeled trees such that
(
T ]j

)
j∈J

is directed.

Then this directed family has a supremum
∨
j∈J T ]j . This supremum enables

us to compute a run-tree from all the finite prefixes obtained by finite reduction
sequences.

Lemma 10 (Fair production lemma). Consider a fair maximal rewriting se-
quence

T0 = 〈 ε, 1, {0 7→ ε} , S0 :
∧
{1}

�ε q0 ` S0 : q0 〉 B T1 B T2 B · · ·

Then the tree T =
∨
i∈N T ]i is a run-tree of A over 〈 G 〉.

Proof. The family of Σsound -labeled trees

T ]0 = 〈 ε, q0 〉 4 T ]1 4 T ]2 4 · · ·

is directed by definition of B and (·)], so that it has a supremum T =
∨
i∈N T ]i .

Since every T ]i is labeled by an element of Dom(〈 G 〉)×Q, the limit tree T is
as well a (Dom(〈 G 〉)×Q)-labeled unranked tree. From the definition of an
execution tree of A over 〈 G 〉 (Definition 11 on p. 49), we need to check that:

• T (ε) = 〈 ε, q0 〉: this follows from T ]0 4 T .

• and that for every β ∈ dom(T ), denoting T (β) = 〈α, q 〉 and a =
〈 G 〉(α), there exists S ⊂ N×Q satisfying δ(q, a) and such that

∀(i, q′) ∈ S, ∃j ∈ N, (βj ∈ dom(T )) ∧ (T (βj) = 〈αi, q′〉)

Since T is computed by an increasing sequence of (Dom(〈 G 〉)×Q)-
labeled trees, there exists k ∈ N such that T ]k(β) = 〈α, q 〉. Two different
situations arise:

– If Tk(β) = 〈α, q 〉, then the node β was generated by the case (2)
of the definition of B. It therefore exists

{(i, qi,j) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfying δ(q, a)

such that the children of β in T ]k are
1Recall that a sequence is fair when it eventually rewrites every leaf of the form

〈α, l, Λ, Γ ` t : q 〉.
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〈α, q 〉

〈αn, qn,kn 〉· · ·〈α1, q1,1 〉

Since T ]k 4 T , T (β) has the same children as T ]k(β), so that their
set satisfies δ(q, a) as well.

– If Tk(β) 6= 〈α, q 〉, then it is of the shape 〈α, l, Λ, Γ ` t : q 〉.
In a sense, it means that we did not pick k “late enough” in the
reduction sequence: by the progress lemma (Lemma 6), there exists
k′ > k such that T ′k(β) = 〈α, q 〉. We apply it the argument just
above.

8.7 Soundness theorem

A crucial technical lemma in the proof of the soundness theorem is the infi-
nite ancestor lemma (Lemma 12), which requires first a preliminary lemma
(Lemma 11, proved in §8.8). The infinite ancestor lemma states that every
infinite branch b of the run-tree T constructed in the fair production lemma
(Lemma 10) is computed from an infinite chain of unfoldings

S0, F i1ki1
, F i2ki2

, . . .

in which each non-terminal is introduced by the unfolding of the previous one.
This enables us to relate the construction of the infinite branch b of the run-
tree T with the infinite play of Adamic(G,A) where Adam picks these non-
terminals and Eve plays her winning strategyW. Lemma 12 then ensures that
every infinite branch of the run-tree constructed in the fair production lemma
(Lemma 10) is winning, by relating the colors occurring along it with the colors
played in the corresponding play in Adamic(G,A).

As we explained in our overview of the proof (§8.4), the proof of the progress
lemma (Lemma 6) explicates a construction which relates a finite play in
Adamic(G,A) where Eve follows her winning strategy W, with the computa-
tion of a finite branch of the run-tree T computed by B. The relation between
infinite plays in Adamic(G,A) where Eve follows W and infinite branches of T
extends this construction to the infinitary case. As we will see in the proof
of Lemma 12, this infinitary extension requires to use the following technical
lemma:

Lemma 11. Consider an infinite rewriting sequence computing an infinite
branch of the run-tree of A over 〈 G 〉 constructed in the fair production lemma
(Lemma 10):

〈 ε, 1, {0 7→ ε} , S0 :
∧
{1} �ε q0 ` S0 : q0 〉 = 〈α1, 1, Λ1, Γ1 ` t1 : q1 〉

B C1[ 〈α2, 2, Λ2, Γ2 ` t2 : q2 〉 ]
B C1[C2[ 〈α3, 3, Λ3, Γ3 ` t3 : q3 〉 ]]
B · · ·
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We write j ≺ i when
tj = F ikj s̃j

meaning that the non-terminal F ikj introduced at the ith step is to be unfolded
at the jth. Then there exists an infinite sequence of integers (in)n∈N such that

· · · ≺ i3 ≺ i2 ≺ i1 ≺ i0 = 0

Note that i1 = 1 by construction.

Proof. See §8.8.

This technical lemma enables us to prove the infinite ancestor lemma, which
relates the infinite branches of the run-tree T of A over 〈 G 〉 computed by the
fair production lemma (Lemma 10) to infinite plays of Adamic(G,A) where Eve
plays following her winning strategy W.

Lemma 12 (Infinite ancestor lemma). Consider a fair maximal rewriting se-
quence

T0 = 〈 ε, 1, {0 7→ ε} , S0 :
∧
{1}

�ε q0 ` S0 : q0 〉 B T1 B T2 B · · ·

For every infinite branch b of the run-tree T =
∨
i∈N T ]i of A over 〈 G 〉, there

exists an infinite play in Adamic(G,A) with the same color.

Proof. Consider an infinite branch b of T , identified by the sequence of nodes
(αi)i∈N it contains. Note that α0 = ε. We can extract from the maximal fair
rewriting sequence

T0 = 〈 ε, 1, {0 7→ ε} , S0 :
∧
{1}

�ε q0 ` S0 : q0 〉 B T1 B T2 B · · · (8.7)

an infinite rewriting sequence

〈 ε, 1, {0 7→ ε} , S0 :
∧
{1} �ε q0 ` S0 : q0 〉 = 〈α1, 1, Λ1, Γ1 ` t1 : q1 〉

B C1[ 〈α2, 2, Λ2, Γ2 ` t2 : q2 〉 ]
B C1[C2[ 〈α3, 3, Λ3, Γ3 ` t3 : q3 〉 ]]
B · · ·

computing the branch b, by removing from (8.7) every rewriting step applied
to a leaf

〈α′, l, Λ, Γ ` t : q 〉

where α′ does not belong to b. By Lemma 11, there exists an infinite sequence

· · · ≺ i3 ≺ i2 ≺ i1 ≺ i0 = 0

of indexes such that tij = F
ij−1

kij
s̃ij . This means that the infinite rewriting

sequence computing b factors as
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〈 ε, 1, {0 7→ ε} , S0 :
∧
{1} �ε q0 ` S0 : q0 〉

= 〈αi1 , i1, Λi1 , Γi1 ` F i0ki1
s̃i1 : qi1 〉

B+ C ′1[ 〈αi2 , i2, Λi2 , Γi2 ` F i1ki2
s̃i2 : qi2 〉 ]

B+ C ′1[C ′2[ 〈αi3 , i3, Λi3 , Γi3 ` F i2ki3
s̃i3 : qi3 〉 ]]

B+ · · ·
B+ C ′1[C ′2 · · · [C ′n[ 〈αin+1

, in+1, Λin+1
, Γin+1

` F inkin+1
s̃in+1

: qin+1
〉 ]] · · · ]]

B+ · · ·

Note that, for every n ∈ N, we can consider only the finite prefix of this infinite
rewriting sequence ending on

C ′1[C ′2 · · ·C ′n[ 〈αin+1
, in+1, Λin+1

, Γin+1
` F inkin+1

s̃in+1
: qin+1

〉 ] · · · ]]

The situation is then precisely the same as in the proof of the progress lemma
(Lemma 6), so that we can similarly use Lemma 8 and Lemma 9 to prove the
existence of a play

(S : �ε q0) Γ(S :�ε q0)

(
Fki1 : �Ω(C′1[ ]qi1

) θi1

)
Γ(

Fki1
:�Ω(C′1[ ]qi1

) θi1

) · · ·
(
Fkin : �Ω(C′n[ ]qin

) θin

)
in Adamic(G,A). By doing this for increasing values of n, we obtain an infinite
play in Adamic(G,A) where Eve plays according to her winning strategyW, so
that the maximal color occurring infinitely often in the sequence

Ω(C ′1[ ]qi1 ) , Ω(C ′2[ ]qi2 ) , · · ·

is even. The sequence

C ′1[C ′2[ · · · C ′n[ ]qin · · · ]qi2 ]qi1 (8.8)

converges to b, in the sense that for every finite prefix of b there exists n
such that (8.8) contains this finite prefix. Note that the sequence of contexts(
C ′j [ ]qij

)
j∈N

can be understood as a factorization of the infinite branch b into

infinitely many finite parts. As discussed at the end of the completeness proof,(
Ω(C ′j [ ]qij )

)
j∈N

is the sequence containing the maximal color seen along every

such finite part C ′j [ ]qij of the infinite branch b. The color Ω(C ′j [ ]qij ) is pre-
cisely the maximal one seen from the root of C ′j [ ]qij – excluded – to its hole
[ ]qij – included. Note that C ′j may be empty; this is precisely the case when
Ω(C ′j [ ]qij ) = ε. However, the productivity of the recursion scheme ensures
that no infinite sequence of ε may occur in a branch. It follows that every
color occurring along b, except the one of the root, is taken into account in the
computation of this sequence of colors. This implies that the color of b is the
maximal color occurring infinitely often in the sequence

(
Ω(C ′j [ ]qij )

)
j∈N

.

Since W is a winning strategy, every infinite branch of T is winning. It
follows that T is a winning run-tree of A over 〈 G 〉:
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Corollary 3. Consider a fair maximal rewriting sequence

T0 = 〈 ε, 1, {0 7→ ε} , S0 :
∧
{1}

�ε q0 ` S0 : q0 〉 B T1 B T2 B · · ·

The run-tree T =
∨
i∈N T ]i over A over 〈 G 〉 is winning.

We may now prove the soundness theorem.

Theorem 22 (Soundness). Let A be an alternating parity automaton and G be
a higher-order recursion scheme. If Eve has a winning strategy in Adamic(G,A),
then A has a winning execution over 〈 G 〉.

Proof. Let W be a winning strategy for Eve. Its existence allows to define B
and to obtain the lemmas proved in this section. Using the progress lemma
(Lemma 6), we build a maximal fair rewriting sequence

T0 = 〈 ε, 1, {0 7→ ε} , S0 :
∧
{1}

�ε q0 ` S0 : q0 〉 B T1 B T2 B · · ·

which is potentially infinite. By the fair production lemma (Lemma 10), this
sequence computes a run-tree of A over 〈 G 〉. If the sequence is finite, then the
run-tree is finite and therefore winning. Else, it has infinite branches, which
are winning by Lemma 12, so that A accepts 〈 G 〉.

8.8 Proof of Lemma 11

In this section, we present the proof of Lemma 11 due to Kobayashi and
Ong [KO, Appendix B]. This lemma is crucial in the original proof of sound-
ness of Kobayashi and Ong’s theorem (Theorem 16) as well as in our modal
reformulation in the type system Z(A) (Theorem 19), as it ensures that every
infinite branch of the run-tree computed by the relation B is associated to an
infinite play of the corresponding parity game Adamic(G,A) or Adamic(G,A)
where Eve follows her winning strategy. Equivalently, we can relate the infi-
nite branches of the run-tree with infinite branches of the infinite derivation of
KOfix(G,A) or Zfix(G,A) corresponding to Eve’s winning strategy.

Since this lemma is only concerned with rewriting, and does not mention
coloring, most of the technical annotations of the Σsound -labels can be dropped.
Moreover, we focus here on the exploration of an infinite branch, and not on
the generation of a whole infinite tree. This leads us to redefine the rewriting
relation B for this section. We set:

1. 〈 l, F l′ t̃ 〉 B 〈 l + 1, ρ(t′)[x̃← t̃] 〉

for R(F ) = λx̃. t and ρ the function rewriting every non-terminal G to
its annotated counterpart Gl.

2. and 〈 l, a t1 · · · tn 〉 B 〈 l + 1, ti 〉.
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Recall that we write j ≺ i when

tj = F ikj s̃j

meaning that the non-terminal F ikj introduced at the ith step is to be unfolded
at the jth. Lemma 11 translates to this redefinition of B as:

Lemma 13. Consider an infinite rewriting sequence

〈 1, S0 〉 = 〈 1, t1 〉 B 〈 2, t2 〉 B 〈 3, t3 〉 B · · ·

Then there exists an infinite sequence of integers (in)n∈N such that

· · · ≺ i3 ≺ i2 ≺ i1 ≺ i0 = 0

Note that i1 = 1 by construction. This subtle proof proceeds in two steps:

1. First, an intersection type system is defined, in which a higher-order
recursion scheme has the refinement type ∞ if and only if it admits an
infinite reduction sequence for B.

2. Then, considering a higher-order recursion scheme G which has an infinite
rewriting sequence, we define two variants G′ and G′′.

• The first one only differs from G by the fact that every of its non-
terminals is explicitly labeled with the integer corresponding to the
rewriting step it was introduced at. It has therefore an infinite re-
duction sequence. Note that we need infinitely many non-terminals
for this purpose: we will consider the appropriate notion of non-
deterministic higher-order recursion scheme in this goal.

• The second one only allows to use the rewriting rules of G until a
fixed depthN of rewritings, but no more: G′′ will not have an infinite
reduction sequence, and consequently will not admit the type ∞ in
the intersection type system previously defined. N will be taken
“big enough”: it will be the maximal size of the set of types for G in
this type system.

We then proceed by contradiction, supposing that 4 is a well-founded
relation. This allows us to use well-founded induction (a principle recalled
on p. 43) on 4 to prove that the non-terminals of G′ can not have types
their counterparts in G′′ do not have, and to reach the contradictory
statement that G′ does not have an infinite reduction sequence.

8.8.1 An intersection type system detecting infinite
reduction sequences

The construction of G′ we just sketched requires an extension of the notion of
higher-order recursion scheme with non-determinism:

Definition 34 (Non-deterministic HORS). A non-deterministic higher-order
recursion scheme is a tuple G = 〈Σ,N ,R, S〉 , which differs from deterministic
higher-order recursion schemes by the fact that
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• the set N of non-terminals may be either finite or countable,

• the function R now maps a non-terminal F to a set of closed terms
λx1. . . . λxn. t :: κ(F ) over the set of variables V, with constants in
N ] Σ, and such that t :: o is a term without abstractions.

Generalizing the deterministic case, we write F → λx1. . . . λxn. t when
λx1. . . . λxn. t ∈ R(F ).

We define over non-deterministic HORS the rewriting relation 3, which ex-
plores branches obtained by reduction just as B would, with the minor alter-
ation that the labels, which are not necessary in this subsection, are omitted:

if F → λx̃. t′ then F t̃ 3 t′[x̃← t̃]

a t1 · · · tn 3 ti

The grammar of intersection types we define is similar to the one considered in
Chapter 5, with Q = {∞}, but the type system itself will be defined differently.
In other terms, intersection types are defined by the grammar:

δ ::= ∞ |
∧
i∈I

δi → δ

The intersection operator is idempotent. Notice for instance that the type

∅ → ∞→ ∅ →∞

is obtained using empty intersections. The well-foundedness relation is defined
inductively by the rules

∞ :: o δ :: κ′ δi :: κ for every i ∈ I∧
i∈I δi → δ :: κ→ κ′

The typing rules of the associated system are presented in Figure 8.1. The
contexts, managed additively, are sequences of variables together with a set of
intersection types and the unique simple type these intersection types refine.
Contexts are denoted using the letter ∆. Due to the additive management
of contexts, weakening is admissible: if ∆ ⊆ ∆′ and ∆ ` t : δ :: κ, then
∆′ ` t : δ :: κ holds as well. Three rules deserve to be commented:

• In the Const rule, the typical intersection type for a non-terminal a ∈ Σ
of arity n ≥ 1 is

a : α1 → · · · → αn →∞

where αi is either ∅ or∞, and at least one αi is∞. Informally, this means
that the computation of the direction i is to take an infinite amount of
rewriting steps. Note that a symbol of arity 0 can not have the type
∞: this corresponds to the fact that its head reduction will not take any
further step.
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δ ∈ { δi | i ∈ I }
Axiom (x ∈ N ∪ V)

∆, x :
∧
i∈I δi :: κ ` x : δ :: κ

∞ ∈
⋃
{ δi,j | i ∈ {1, . . . , n} , j ∈ Si }

Const a ∈ Σ
∆ ` a :

∧
j∈S1

δ1,j → · · · →
∧
j∈Sn δn,j → ∞ :: on → o

∆ ` t :
∧
i∈I δi → δ :: κ→ κ′ ∆ ` u : δi :: κ for every i ∈ I

App
∆ ` t u : δ :: κ′

∆, x :
∧
i∈I δi :: κ ` t : δ :: κ′

λ
∆ ` λx. t :

∧
i∈I δi → δ :: κ→ κ′

∀F : δ :: κ ∈ ∆, ∃ t ∈ R(F ) such that ∆ ` t : δ :: κ(F )
fix ` G : ∆

` G : ∆ ∆ ` t : δ :: κ
ini ` (G, t) : δ

Figure 8.1: An intersection type system for detecting infinite rewriting
sequences.

• In the fix rule, we check that the context ∆ only provides sound typings
for the non-terminals F ∈ N , in the sense that every intersection type
for F must be admitted by some term F rewrites to. This is a non-
deterministic adaptation of the stability of types ensured by the fix rules
of the type systems we considered earlier.

• The ini rule is the one we intend to use as conclusion of the typing
derivations: it checks that there exists a “sound” typing environment for
the non-terminals in which t has the appropriate type.

This intersection type system is related to the rewriting of non-deterministic
HORS by the following theorem:

Theorem 23. Let G be a non-deterministic higher-order recursion scheme of
start symbol S. Then

` (G, S) : ∞

if and only if there exists an infinite rewriting sequence

S 3 t1 3 t2 3 · · ·
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The proof of this theorem is divided in companion lemmas. The existence of an
infinite rewriting sequence is obtained from Lemma 14 and Lemma 16, while
the existence of a typing derivation follows from Lemma 18 applied to S = t0.

8.8.2 Existence of an infinite rewriting sequence

Lemma 14 (Progress). If ` (G, t) : ∞ then there exists a term t′ such that
t3 t′.

Proof. Suppose that ` (G, t) : ∞ but that there is no such t′. By definition,
there exists a context ∆ such that G : ∆ and that ∆ ` t : ∞ :: o. As t is
irreducible and of ground type, it is

• either a non-terminal a ∈ Σ of arity 0, which can not have type ∞ as we
remarked earlier,

• or t = F s̃ for a non-terminal F such that R(F ) = ∅. Since ∆ ` F s̃ :
∞ :: o, F must have at least one intersection type in ∆. But then G : ∆
implies that there exists at least one term to which F rewrites, which is
contradictory.

The following lemma is required to prove Lemma 16:

Lemma 15 (Substitution lemma). If

∆, x :
∧
i∈I

δi :: κ ` t : δ :: κ′

and that, for every i ∈ I, ∆ ` s : δi :: κ, then ∆ ` t[x← s] : δ :: κ′ holds.

Proof. The proof is by induction on t. We omit simple types to ease reading.

• If t = a ∈ Σ is a terminal such that ∆, x :
∧
i∈I δi ` a : δ, then

a[x← s] = a and ∆ ` a : δ follows immediately from the Const rule.

• If t = F ∈ N is a non-terminal, then ∆, x :
∧
i∈I δi ` F : δ was

obtained from the Axiom rule, with F : δ ∈ ∆, so that ∆ ` F : δ holds
as well.

• If t = y 6= x is a variable other than x, the situation is the same as in
the previous point.

• If t = x, then there exists j ∈ I such that δ = δj since ∆, x :
∧
i∈I δi ::

κ ` x : δ. It follows immediately that ∆ ` s : δj holds.

• If t = λy. u, we have that δ =
∧
j∈J δ

′
j → δ′′ and that

∆, x :
∧
i∈I

δi, y :
∧
j∈J

δ′j ` u : δ′′

We apply the induction hypothesis to u, which provides a derivation of

∆, y :
∧
j∈J

δ′j ` u[x← s] : δ′′

We obtain the desired result by applying the rule λ.
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• If t = t1 t2 is an application of terms, the typing of t is derived from the
rule

∆, x :
∧
i∈I δi ` t1 :

∧
j∈J δ′j → δ′′ ∆, x :

∧
i∈I δi ` t2 : δ′j (∀j ∈ J)

∆, x :
∧
i∈I δi ` t1 t2 : δ′′

We apply the induction hypothesis to the typing derivation of t1 and to
each derivation of t2, use the Application rule on the result, and obtain
in this way a derivation of ∆ ` t[x← s] : δ.

The following lemma shows that if progress can be made in the reduction of
a term of type ∞, then a reduction preserving this type exists. The point is,
depending on the nature of the head symbol, either to choose an appropriate
rewriting if it is a non-terminal, or an appropriate direction to explore if it is
a terminal.

Lemma 16. If ` (G, t) : ∞ and t3 t′, then there exists a term t′′ such that
t3 t′′ and that ` (G, t′′) : ∞.

Proof. 1. Suppose that t 3 t′ comes from

t = F s1 · · · sn 3 u[xi ← si] = t′

where F → λx1 · · · xn. u. Since ` (G, t) : ∞, we have that ` G : ∆
and that ∆ ` F s̃ : ∞ :: o. The latter necessarily follows from the
existence of a type

F :
∧
j∈S1

δ1,j → · · · →
∧
j∈Sn

δn,j → ∞ (8.9)

and of derivations of the sequents ∆ ` si : δi,j for i ∈ {1, . . . , n} and
j ∈ Si.
Since ` G : ∆ and that (8.9) holds, the rule fix ensures the existence of
a term u′ such that F → λx1 · · · xn. u′ and that

∆ ` λx1 · · · xn. u′ :
∧
j∈S1

δ1,j → · · · →
∧
j∈Sn

δn,j → ∞

This must have been obtained by applying n times the λ rule, so that
there exists a proof of

∆, x1 :
∧
j∈S1

δ1,j , · · · xn :
∧
j∈Sn

δn,j ` u′ : ∞

to which we can apply the substitution lemma for each variable xi and
term si, obtaining a proof of

∆ ` u′[x̃← s̃] : ∞

We set t′′ = u′[x̃← s̃].
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2. Suppose that t 3 t′ comes from

t = a s1 · · · sn 3 si = t′

Then ` (G, t) : ∞ implies that there exists ∆ such that ∆ ` a s1 · · · sn.
In the derivation proving this statement, a is introduced with a type

a : α1 → · · · → αn →∞

such that there exists j with αj = ∞. We set t′′ = sj and obtain the
desired property.

8.8.3 Existence of a typing derivation

Consider an infinite rewriting sequence

S 3 t1 3 t2 3 · · · (8.10)

We shall prove that ` (G, ti) : ∞ holds for every i ∈ N. The idea is to
extract typing information from the reduction sequence, in the spirit of the
completeness proof. We define similarly types for prefixes of the terms ti, and
associated typing contexts.

Type of a prefix. For each prefix s of ti, that is, each term s such that
ti = s ũ, we define the intersection type δs,i by induction on the simple type
of s:

• If s :: o, then δs,i = ∞.

• If s : κ→ κ′, then ti = s u′ ũ for some term u′ :: κ, so that s u′ :: κ′. As
in the completeness proof, we focus on the types u′ has when it appears
in head position in the rewriting sequence (8.10), and consider the set

S = { j ∈ N | u′ is a prefix of tj }

We then define
δs,i =

∧
j∈S

δu′,j → δs u′,i

Typing environment associated to a prefix. For each prefix s of ti,
we define the typing environment ∆s,i by induction on the structure of s:

• If s = a ∈ Σ, then ∆s,i = ∅.

• If s = F ∈ N , then ∆s,i = F : δs,i.

• If s = s1 s2, consider the set S = { j ∈ N | s2 is a prefix of tj }, and
set ∆s,i = ∆s1,i ∪

⋃
j∈S ∆s2,j .

These typing environments allow to type a prefix s of ti with δs,i:
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Lemma 17. For every i ∈ N and every prefix s of ti, we have that

∆s,i ` s : δs,i

Moreover, this judgment can be derived only from judgments of the form ∆s,i `
u : δu,j.

Proof. The proof is by induction on the structure of the prefix s of ti:

• If s = a ∈ Σ, then s 6= ti as it would imply a :: o and ti could not
rewrite to ti+1. So a has simple type on → o, with n ≥ 1, and its refined
type δa,i is of the shape

a : α1 → · · · → αn →∞

where each αk is either ∅ or ∞. To prove that ∆a,i = ∅ ` a : δa,i, we
need to use the Const rule, and thus to show that there is some k such
that αk = ∞. But since the head of ti is a, the rewriting step ti 3 ti+1

will put in head position one of the arguments of a, which is equal to
ti+1 and is of base type. By definition, δti+1,i+1 = ∞, so that in δa,i
one of the arguments has type ∞ and we can use Const to conclude that
∆a,i ` a : δa,i.

• If s = F ∈ N , then F :
∧
{1} δF,i ` F : δF,i is obtained immediately

by the Axiom rule.

• If s = s1 s2, we have by induction hypothesis that

∆s1,i ` s1 :
∧
j∈S

δs2,j → δs,i

since s1 is a prefix of ti as well and, by definition of δs1,i, S is the set of
indexes j such that s2 is a prefix of tj . So we can apply the induction
hypothesis to s2 for every j ∈ S, and obtain derivations of

∆s2,j ` s2 : δs2,j

Note that, by induction hypothesis, all the derivations introduced here
are themselves derived from judgments of the form ∆s,i ` u : δu,j .
Since ∆s,i = ∆s1,i ∪

⋃
j∈S ∆s2,j , every context appearing in one of

these derivations is included in ∆s,i, and we can use the admissibility
of weakening to obtain proofs in this context. We can then use the
Application rule to conclude that ∆s,i ` s1 s2 : δs,i.

It follows that we can extract from the rewriting sequence (8.10) a typing
derivation of (G, ti) for every i ∈ N, and notably for i = 0 which implies the
converse direction of Theorem 23:

Lemma 18. If there is an infinite rewriting sequence

S = t0 3 t1 3 t2 3 · · ·

then for every i ∈ N we have that ` (G, ti) : ∞ holds.
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Proof. Let ∆ =
⋃
i∈N ∆ti,i. By Lemma 17, followed by context weakening,

we obtain that, for every i ∈ N, ∆ ` ti : ∞. It remains to prove that ` G : ∆
to conclude, using the ini rule. Let us consider F : δ :: κ(F ) ∈ ∆, we need
to prove that there exists u ∈ R(F ) such that ∆ ` u : δ :: κ(F ). We will
obtain this term from the reduction sequence. By definition of ∆ and of the
types of prefixes δt,i, there exists i ∈ N such that ti = F s1 · · · sn, and that

δ = δF,i =
∧
j∈S1

δs1,j → · · · →
∧
j∈Sn

δsn,j → ∞

The reduction ti 3 ti+1 uses a rewrite rule F → λx1 · · · xn. u′, such that
ti+1 = u′[xk ← sk]. By Lemma 17, there is a derivation π of ∆ti+1,i+1 `
u′[xk ← sk] : ∞, obtained by using only judgments of the form ∆ti+1,i+1 `
sj : δsj ,l with l ∈ Sj to type the arguments sj . To obtain a derivation of

∆ti+1,i+1, x1 :
∧
j∈S1

δs1,j , · · · , xn :
∧
j∈Sn

δsn,j ` u′ : ∞

we replace each subproof ∆ti+1,i+1 ` sj : δsj ,l by an Axiom leaf

∆ti+1,i+1, x1 :
∧
j∈S1

δs1,j , · · · , xn :
∧
j∈Sn

δsn,j ` xj : δsj ,l

and weaken all the type environments appearing in π accordingly. The appli-
cation of n instances of the λ rule gives the term u = λx1 · · · xn. u′ we were
looking for, together with a proof that ∆ti+1,i+1 ` u : δ. So ` G : ∆ and
` (G, ti) : ∞ holds.

Given a non-deterministic HORS G, we denote by

∆G =
⋃
{∆ | G : ∆ }

the greatest set of typings for its non-terminals which is sound with respect
to rewriting. We write ∆G(F ) for the intersection type of F in ∆G , and write
δ ∈ ∆G(F ) if and only if δ appears in the intersection type of F . Theorem 23
can therefore be restated as:

A non-deterministic higher-order recursion scheme G has an infinite
reduction sequence if and only if ∞ ∈ ∆G(S).

8.8.4 On the well-foundedness of 4

We shall now prove Lemma 13 by contradiction. Consider a deterministic
HORS G = 〈Σ,N ,R, S〉 and an infinite rewriting sequence

〈 1, S0 〉 = 〈 1, t1 〉 B 〈 2, t2 〉 B 〈 3, t3 〉 B · · ·

We suppose that there is no infinite sequence of integers (in)n∈N such that

· · · ≺ i3 ≺ i2 ≺ i1 ≺ i0 = 0

that is, that the relation≺ is well-founded. We now define formally the two non-
deterministic higher-order recursion schemes G′ and G′′ mentioned on p. 178.
For convenience, we set N = {F1, . . . , Fn }, with S = F1.



186 CHAPTER 8. SOUNDNESS OF THE TYPE SYSTEM

The first one is G′ = 〈Σ,N ′,R′, S0〉, with{
N ′ =

{
F i | F ∈ N , i ∈ N

}
R′ =

{
F i → ρj(t) | R(F ) = t and j ≺ i

}
where ρj renames every non-terminal G occurring in t to Gj . So G′ is essen-
tially G, in which non-terminals are explicitly labeled by the reduction step
which creates them. As a consequence, G′ has an infinite reduction sequence
for 3, which implies by Theorem 23 that ∞ ∈ ∆G′(S

0).

We define N as the maximal size ∆G could possibly have:

N = ΣF∈N | { δ | δ :: κ(F ) } |

and then define the second non-deterministic HORS as

G′′ = 〈Σ ] {e : 0} ,N ′′,R′′, S(N)〉

with 
N ′′ =

{
F (i) | F ∈ N , i ∈ {0, . . . , N}

}
R′′ =

{
F (i) → ρ(i−1)(t)| R(F ) = t and i ∈ {1, . . . , N}

}
]
{
F (0) → λx̃. e

}
where ρ(i−1) renames every non-terminal G occurring in t to G(i−1). This
recursion scheme unfolds the rules of G until depth N , but no more: it does
not really use recursion, and can be represented as a simply-typed λ-term. As
a consequence of the strong normalization of the simply-typed λ-calculus, all
its reduction sequences are finite, and thus

∞ /∈ ∆G′′(S
(N))

We shall now prove that the well-foundedness of ≺ prevents G′ from having
types G′′ can not have: in a sense, since N is at least as big as the set of all
possible intersection types for non-terminals, G′′ can already explore all the
types G′ could have, even if it does not have infinite reduction sequences. To
this end, we will use the function F defined on type environments as

F(∆) = {F : δ :: κ(F ) | ∆ ` R(F ) : δ :: κ(F ) }

which extends a type environment with all the intersection types the unfoldings
of non-terminals admit. This function is monotonic, as weakening is admissible
in the type system we consider here, so that it has a least fixpoint computed
by the increasing sequence

∅ ⊆ F(∅) ⊆ F2(∅) ⊆ · · · ⊆ FN (∅)

As the size of F i(∅) is at most N by definition of the latter, we have that
FN (∅) = FN+1(∅).

Note that FN (∅) computes the set of intersection types non-terminals can
have after being rewritten N times. Since this is what the labels of G′′ count,
we obtain

FN (∅) =
{
Fi : δ | δ ∈ ∆G′′

(
F

(N)
i

)}
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We now prove, by well-founded induction, that

∆G′
(
F ji

)
⊆ FN (∅)(Fi) = ∆G′′

(
F

(N)
i

)
for j ∈ N and i ∈ {1, . . . , n}. Let S = { j′ | j′ ≺ j } be the set of labels that
can be introduced by the rewriting of G′ when unfolding F j . We have that

∆G′(F
j
i ) =

⋃
j′∈S

{
δ | δ :: κ(Fi) and F j

′

1 : ∆G′(F
j′

1 ), . . . , F j
′

n : ∆G′(F
j′

n ) ` ρj′(R(Fi)) : δ
}

By dropping the labels of non-terminals, we obtain:

∆G′(F
j
i ) =

⋃
j′∈S

{
δ | δ :: κ(Fi) and F1 : ∆G′(F

j′

1 ), . . . , Fn : ∆G′(F
j′

n ) ` R(Fi) : δ
}

Since j′ ≺ j, we apply the induction hypothesis to each ∆G′(F
j′

i ), and obtain

∆G′(F
j
i ) ⊆

⋃
j′∈S

{
δ | δ :: κ(Fi) and F1 : FN (∅)(F1), . . . , Fn : FN (∅)(Fn) ` R(Fi) : δ

}
that is:

∆G′(F
j
i ) ⊆

⋃
j′∈S

{
δ | δ :: κ(Fi) and FN (∅) ` R(Fi) : δ

}
Since j′ no longer appears in the set we consider, the union can be removed,
and we get that

∆G′(F
j
i ) ⊆

{
δ | δ :: κ(Fi) and FN (∅) ` R(Fi) : δ

}
This set coincides with FN+1(∅) = FN (∅), so that we can conclude by well-
founded induction that

∆G′(F
j
i ) ⊆ FN (∅)(Fi) = ∆G′′(F

(N)
i )

In particular, since ∞ /∈ ∆G′′(S
(N)), we obtain that ∞ /∈ ∆G′(S

0), which
contradicts the existence of an infinite reduction sequence for G′ and thus for
G. This implies that ≺ is not well-founded: there exists an infinite sequence of
integers (in)n∈N such that

· · · ≺ i3 ≺ i2 ≺ i1 ≺ i0 = 0

This proves Lemma 13, and thus Lemma 11.
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Chapter 9

An infinitary model of linear logic

In Chapter 5, we investigated the connection between the non-idempotent in-
tersection type system H(A) accounting for the alternating behavior of a tree
automaton A and a relational semantics of linear logic with an appropriate
interpretation of constants, parameterized by this automaton A. This led to
Theorem 14, stating that the semantics of a λ-term of ground type t contains
the initial state of A if and only if its normal form 〈 t 〉 is accepted by A.

In this chapter, we start by explaining how this dependency in A of the
type system can be removed, by considering a Church encoding of the term t
producing the tree 〈 t 〉 of interest. We then observe that linear logic allows to
type such Church encodings, and that the duals of these types are precisely
the ones of tree automata over the same signature. Interestingly enough, typ-
ing these Church encodings with formulas of linear logic allows to distinguish
between non-deterministic tree automata, and alternating tree automata. We
explain how this duality between a λ-term t obtained by Church encoding and
a tree automaton A defined over the same signature allows to compute their
interaction in the relational semantics. The result of this interaction is the set
of states q of the automaton A from which A accepts the tree 〈 t 〉 represented
by t.

Our purpose is then to extend the relational semantics, so as to capture the
whole higher-order model-checking problem. As we remarked in §6.5, the addi-
tion of a fixpoint operator powerful enough to generate infinite trees leads, in a
system of non-idempotent intersection types – or, equivalently, in the relational
semantics – to the apparition of countable multiplicities. We therefore intro-
duce an infinitary exponential modality  , and the corresponding infinitary
relational semantics.

The next step is to account for the coloring that is induced by alternating
parity automata. We take advantage of the investigations of Chapter 6, in
which we proved that higher-order model-checking can be captured using the
type system Zfix(G,A). Since the coloring operation � of the type system
Zfix(G,A) is modal, it can be reflected in the infinitary relational semantics by
defining a comonad �. This comonad enriches the denotations of the relational
model with color annotations. Moreover, the comonad � distributes over the
exponential comonad  , and this distributivity law between � and  allows us
to define an infinitary and colored exponential modality    as the composite
   =  ◦ � of the two modalities. In the Kleisli category of this exponential
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modality    , the simple type o→ o is interpreted as

[[o→ o]] = [[ � o( o]] = Mcount(Col ×Q)×Q

A typical element of this denotation is

([(0, q0), (1, q1)], q0)

which corresponds to the colored intersection type

(�0 q0 ∧ �1 q1)→ q0

of the colored intersection type system Z(A), extending in this way the cor-
respondence between the type system H(A) and the traditional, uncolored
relational semantics of linear logic explored in Chapter 5.

We also extend the various relational semantics we consider with fixpoint
operators satisfying appropriate equations: the ones defining Conway opera-
tors. We obtain in this way a colored, infinitary relational semantics of the
λY -calculus, in which the fixpoint operator Y is defined as a semantic coun-
terpart to the fix rule of the type system Zfix(G,A). We conjecture that these
semantics allow to capture fully the higher-order model-checking problem: we
believe that the interaction of the semantics of a λ-term with recursion t pro-
ducing a possibly infinite tree 〈 t 〉 and of these of a dual APT A computes the
set of states from which A accepts 〈 t 〉.

We conclude the chapter by briefly introducing colored tensorial logic in
§9.11, a logic which paves the way for an interesting connection between the
infinitary, colored relational semantics and an infinitary, colored game seman-
tics which would compute interactively the denotations of the relational model.

9.1 Linear logic and the duality between trees and
alternating tree automata

Thanks to the seminal works by Girard and Reynolds on polymorphism and
parametricity in the 1970s, it has been recognized that every finite tree t on
a given signature Σ can be seen alternatively as a simply-typed λ-term of an
appropriate type depending on Σ. This correspondence between trees and λ-
terms is even bijective if one considers λ-terms up to βη-equivalence, see for
instance Girard [GTL89]. Typically, a finite tree t on the signature

Σ = { a : 2 , b : 1 , c : 0 } (9.1)

is the same thing under this Church encoding as a simply-typed λ-term t of
type

(o→ o→ o)→ (o→ o)→ o→ o (9.2)

modulo βη-equivalence. The idea underlying the correspondence is that every
constructor a, b, c of the signature Σ should be treated as a variable

a : o → o → o b : o → o c : o (9.3)

where the number of inputs o in the type o→ · · · → o→ o of the variable
a, b, c indicates the arity of the combinator. An equally well-known fact is that
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this translation extends to infinite trees generated by higher-order recursion
schemes on the signature Σ if one extends the simply-typed λ-calculus with a
fixpoint operator Y . For example, the higher-order recursion scheme G on the
signature Σ

G =

{
S 7→ F a b c
F x y z 7→ x (y z) (F x y (y z))

(9.4)

constructs the infinite tree

〈 G 〉 =

a

a

a

b

c

b

c

b

b

c

b

b (9.5)

and can be formulated as a λ-term of the same type (9.3) as previously but
defined in the simply-typed λ-calculus extended with the fixpoint operator Y :

λabc. ((Y (λF. (λxyz. x (y z) (F x y (y z))))) a b c) (9.6)

A natural temptation is to study the correspondence between higher-order
recursion schemes (9.4) and simply-typed λ-terms with fixpoints (9.6) from
the resource-aware point of view of linear logic. Recall that the intuitionistic
type (9.3) is traditionally translated in linear logic as the formula

A = ! ( ! o ( ! o ( o )( ! ( ! o( o )( ! o ( o.

As expected, the higher-order recursion scheme G in (9.4) can be translated as a
proof tA of this formula A in linear logic extended with a fixpoint operator Y .
An amusing and slightly puzzling observation is that the scheme G can be
alternatively translated as a proof tB of the formula B below:

B = ! ( o ( o ( o )( ! ( o( o )( ! o ( o

with the same underlying simply-typed λ-term with fixpoint operator Y . The
difference between the terms tA and tB is not syntactic, but type-theoretic:
in the case of the term tA, the type A indicates that each tree-constructor a,
b and c of the signature Σ is allowed to call its hypothesis as many times as
desired:

a : ! o ( ! o ( o b : ! o ( o c : o

whereas in the case of the term tB , the type B indicates that each variable a, b, c
calls each of its hypothesis exactly once:

a : o ( o ( o b : o ( o c : o
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As a matter of fact, it appears that the proof tB is the image of the proof tA
along a canonical coercion of linear logic

` ι : A( B.

The status of this program transformation ι is difficult to understand unless one
recalls that linear logic is based on the existence of a perfect duality between
the programs of a given type A and their environments or counter-programs
which are typed by the linear negation A⊥ of the original type A. Accordingly,
since the two terms tA and tB = ι ◦ tA are syntactically equal, their difference
should lie in the class of counter-programs of type A⊥ or B⊥ which are allowed
to interact with them. This idea takes its full flavor in the context of model-
checking, when one realizes that every tree automaton A on the signature Σ
may be seen as a counter-program whose purpose is indeed to interact with tA
or tB in order to check whether a specific property of interest is satisfied by
the infinite tree 〈 G 〉 generated by the recursion scheme G. This leads to the
tentative duality principle:

higher-order
recursion schemes G ! tree automata A

where a tree automaton A on the signature Σ is thus seen as a counter-program
of type A⊥ or B⊥ interacting with the higher-order recursion scheme G seen as
a program of type A or B. An apparent obstruction to this duality principle
is that, in contrast to what happens with recursion schemes G, it is in general
impossible to translate a tree automaton A as a proof of linear logic — in
particular because linear logic lacks non-determinism. However, one neat way
to resolve this matter and to extend linear logic with non-determinism is to
embed the logic in its relational semantics, based on the monoidal category
Rel of sets and relations, which we recalled in §5.2. The relational semantics
of linear logic is indeed entitled to be seen as a non-deterministic extension of
linear logic where every nondeterministic tree automatonA = 〈Σ, Q, δ, q0〉may
be “implemented” by interpreting the base type o as the set Q of states of the
automaton, and by interpreting each variable a, b, c as the following relations

a : Q ( Q ( Q b : Q ( Q c : Q

deduced from the transition function δ of the automaton:

a = {(q1, q2, q) ∈ Q×Q×Q | (1, q1) ∧ (2, q2) ∈ δ(q, a)}
b = {(q1, q) ∈ Q×Q | (1, q1) ∈ δ(q, b)}

c = {q ∈ Q | δ(q, c) = true}

The nondeterministic tree automaton A is then interpreted as the counter-
program AB = ! a⊗ ! b⊗ ! c⊗ d of type

B⊥ = ! (Q ( Q ( Q) ⊗ ! (Q ( Q) ⊗ !Q ⊗ Q⊥.

obtained by tensoring the three relations a, b, c lifted with by the exponential
modality ! together with the singleton d = {q0} consisting of the initial state of
the automaton, and understood as a counter-program of type Q⊥. Note that
by composition with the contraposite ι⊥ : B⊥ ( A⊥ of the coercion ι, one
gets a counter-program AA = ι⊥ ◦ AB of type

A⊥ = ! ( !Q ( !Q ( Q) ⊗ ! (!Q ( Q) ⊗ !Q ⊗ Q⊥.
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Note also that when the type o is interpreted as Q in the relational model, the
counter-programs of type B⊥ of the form ! a⊗ ! b⊗ ! c⊗ d with d = {q0} corre-
spond exactly to the non-deterministic tree automata on the signature Σ with
set of states Q and initial state q0. The difference between the two types A
and B becomes very clear and meaningful at this stage: shifting to the type A⊥
enables one to extend the class of nondeterministic tree automata to nondeter-
ministic alternating tree automata A with typical transitions of the form

δ(q, a) = (1, q1) ∧ (1, q2) (9.7)

meaning that the tree automaton Ameeting the tree a(t1, t2) at state q explores
the left subtree t1 twice with states q1 and q2 and does not explore at all
the right subtree t2. Such a transition δ(q, a) is typically represented in the
relational semantics of linear logic by the singleton relation

a = { ( [q1, q2] , ∅ , q ) } : !Q( !Q( Q (9.8)

where one uses the set !Q of finite multisets of Q to encode the transition (9.7)
with the finite multiset [q1, q2] consisting of the two states q1, q2 ∈ Q and
the empty multiset ∅ of states. It should be stressed that a tree automa-
ton A admitting such an “alternating” transition δ(q, a) cannot be encoded as
a counter-program of type B⊥ because the transitions of the tree automaton A
are linear in that type and thus explore exactly once each subtree t1 and t2 of
the tree a(t1, t2). Summarizing the current discussion, we are entitled to con-
sider that each linear type A⊥ and B⊥ reflects a specific class of tree automata
on the signature Σ:

B⊥ ↔ non-deterministic tree automata
A⊥ ↔ non-deterministic alternating tree automata

Accordingly, the purpose of the coercion ι from tA to tB is to restrict the power
of the class of alternating non-deterministic tree automata allowed to explore
the infinite tree 〈 G 〉 generated by the higher-order recursion scheme G of sig-
nature Σ.

Remark 2. Note that the higher-order recursion scheme G of (9.4) can be
typed with the formula

A = ! ( ! o ( ! o ( o )( ! ( ! o( o )( ! o ( o.

However, when it comes to its relational interpretation, the exponential modal-
ity ! is traditionally interpreted as the finite multiset construction, and does
not allow as such to build infinite trees. As explained in §9.3, this is the reason
why we introduce an infinitary exponential, to reflect in the infinitary rela-
tional semantics the syntactic duality between higher-order recursion schemes
and tree automata.

9.2 Duality and model-checking in the relational
semantics

Before we consider extensions of the relational semantics with an infinitary
exponential and a coloring modality, let us remark that the Church encoding



196 CHAPTER 9. AN INFINITARY MODEL OF LINEAR LOGIC

of terms generating trees introduced in the previous section allows a nice gen-
eralization of Theorem 14, in which the semantics we consider are no longer
dependent of an interpretation of constants, but only of the choice of a set of
states Q to interpret the base type o.

The Church encoding of a finite ranked tree over the signature Σ = {fi :
ari | i ∈ I} defines a λ-term t of simple type o with free variables fi of simple
type oari → o, translated as the following formula of linear logic:

fi : ! o( · · ·( ! o︸ ︷︷ ︸
ari

( o for i ∈ I.

The λ-term t itself is thus typed by the following sequent of linear logic:

· · · , fi : !
(

! o( · · ·( ! o︸ ︷︷ ︸
ai

( o
)

, · · · ` t : o

From this follows that its interpretation [[t]] in the relational semantics of linear
logic defines a subset of the following set of “higher-order states”

[[t]] ⊆

 ⊗
i∈I

!

! o( · · ·( ! o︸ ︷︷ ︸
ari

( o

( o


where the return type o is naturally interpreted as the set of states [[o]] = Q
of the alternating tree automaton. As explained in the previous section, the
transition function δ of the alternating tree automaton A is itself interpreted
as a subset

[[δ]] ⊆

 ¯
i∈I

! o( · · ·( ! o︸ ︷︷ ︸
ari

( o

 
which may be “strengthened” in the categorical sense as a subset

[[δ†]] ⊆

 ⊗
i∈I

!

! o( · · ·( ! o︸ ︷︷ ︸
ari

( o

 
where we turn to our advantage the well-known Seely isomorphism of linear
logic:

! (A&B ) ∼= !A⊗ !B.

We may now compose the dual relations [[t]] and [[δ†]], and obtain in this way a
subset of Q. Following the intuition of Theorem 14, this is the set of states from
which the automaton of transition function δ accepts the tree t, as it will be
confirmed by the next theorem. Note also that, since the model is denotational,
t does not have to be the Church encoding of a tree, but can more generally
be any term normalizing to (the Church encoding of) a tree. We obtain in this
way a generalization of Theorem 14 in which the interpretation of the term is
no longer dependent on the APT of interest:

Definition 35 (Church encoding). Let t be a λ-term of simple type o, defined
over the signature of constants Σ = {f1 : ar1, . . . , fn : arn}. We define its
Church encoding tΣ as the simply-typed λ-term

tΣ = λf1. . . . . λfn. t
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of simple type
oar1 → · · · → oarn → o

and defined without constants.

Theorem 24. An alternating tree automaton A = 〈Σ, Q, δ, q0〉 has an ac-
cepting run-tree with initial state q0 over the tree generated by a λ-term t of
base type, defined over the signature of constants Σ, if and only if there exists
u ∈ [[δ†]] such that (u, q0) ∈ [[tΣ]], where tΣ is the Church encoding of t and
where [[δ†]] =Mfin([[δ]]) denotes the set of finite multisets of elements of [[δ]].

Another equivalent way to state the theorem is that the set of accepting
states q0 for a finite run-tree of the alternating tree automaton A is equal to
the composition of [[tΣ]] and of [[δ†]] in the relational semantics.

Proof of Theorem 24. Let us consider an alternating tree automaton A =
〈Σ, Q, δ, q0〉, and a closed λ-term t :: o of base type, defined over the set of
constants Σ = {f1 : ar1, . . . , fn : arn}. Suppose that A has an accepting
run-tree with initial state q0 over the tree generated by t. By Theorem 13,
there is a proof in H(A) of the sequent

∅ ` t : q0 :: o

In this proof, we replace every rule δ introducing the tree constructor fi by a
rule Axiom introducing the free variable fi. This introduces in the contexts of
the proof occurrences of the free variables f1, . . . , fn, so that we obtain a new
proof of the sequent

f1 : τ1, . . . , fn : τn ` t : q0

By appending n Abstraction rules to the conclusion of this proof, we obtain a
proof of the sequent

∅ ` tσ : τ1 → · · · → τnq0

Using the connection between the relational model and the non-idempotent in-
tersection type system H(A) explained in §5.3, we get that ((u1, . . . , un), q0) ∈
[[tσ]], where ui is the element of the relational model corresponding to the inter-
section type τi, and where by construction (u1, . . . , un) ∈ [[δ†]] – as each type
occurring in τi was introduced by the rule δ of the type system H(A).

Let us now prove the converse direction, in a very similar way. Suppose that
there exists u ∈ [[δ†]] such that (u, q0) ∈ [[tΣ]]. Using the connection between
the relational model and the non-idempotent intersection type system H(A) of
§5.3 in the converse direction, we obtain a proof of the sequent

∅ ` tσ : τ1 → · · · → τnq0

inH(A), which does not contain the rule δ as tΣ is defined without constants. In
this proof, each type τi corresponds to the elements of the multiset u regarding
the symbol fi. We remove the λ-abstractions occurring at the root of the proof,
and obtain a proof of the sequent

f1 : τ1, . . . , fn : τn ` t : q0
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Now, each Axiom rule introducing a free variable fi introduces an intersection
type whose translation as a relational denotation belongs to the multiset [[δ†]].
This implies that all the intersection types introduced by these Axiom rules can
be introduced by a δ rule as well. So we replace all the Axiom rules introducing
a free variable fi by δ rules introducing a tree constructor fi. After this process,
there are no longer occurrences of fi in the contexts of the proof. We therefore
obtain a proof of the sequent

∅ ` t : q0 :: o

in the type system H(A). By Theorem 13, the tree generated by the normal-
ization of t is accepted from q0 by the alternating tree automaton A.

An extension to the λY -calculus. At this point, it is tempting to extend
the result to λY -terms, by considering the inductive fixpoint the relational
semantics feature, and which is presented in §9.5. However, all we can obtain
in the relational semantics is the following theorem, in which we implicitly
assume the productivity of the λY -term of interest:

Theorem 25. An alternating tree automaton A = 〈Σ, Q, δ, q0〉 has a finite
accepting run-tree with initial state q0 over the possibly infinite tree generated
by a λY -term t of base type, defined over the signature of constants Σ, if and
only if

q0 ∈ [[tΣ]] ◦ [[δ†]] ⊆ Q

Indeed, in order to build infinite run-trees, the semantics needs to use
infinitely some tree constructors, which are treated as free variables in this
Church encoding. It therefore appears that the only hurdle towards an exten-
sion of this theorem to the alternating tree automata with coinductive (rather
than inductive) acceptance condition is the finiteness of multiplicities in the
traditional relational interpretation of the exponential modality.

9.3 Towards an infinitary model of linear logic

In many respects, denotational semantics started in the late 1960’s with Dana
Scott’s introduction of domains and the fundamental intuition that λ-terms
should be interpreted as continuous rather than general functions between do-
mains. This seminal insight has been so influential in the history of our disci-
pline that it remains deeply rooted in the foundations of denotational semantics
more than forty-five years later. In the case of linear logic, this inclination for
continuity means that the interpretation of the exponential modality

A 7→ !A

is finitary in most denotational semantics of linear logic. This finitary nature
of the exponential modality is tightly connected to continuity because this
modality regulates the linear decomposition of the intuitionistic implication:

A ⇒ B = !A ( B.
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Typically, in the qualitative and quantitative coherence space semantics of lin-
ear logic, the coherence space !A is either defined as the coherence space !A
of finite cliques (in the qualitative semantics) or of finite multi-cliques (in the
quantitative semantics) of the original coherence space A. This finiteness con-
dition on the cliques {a1, . . . , an} or multi-cliques [a1, . . . , an] of the coherence
space !A captures the computational intuition that, in order to reach a given
position b of the coherence space B, every proof or program

f : !A ( B

will only explore a finite number of copies of the hypothesis A, and reach at
the end of the computation a specific position ai in each copy of the coherence
space A. In other words, the finitary nature of the interpretation of !A is just
an alternative and very concrete way to express in these traditional models of
linear logic the continuity of proofs and programs.

In this chapter, we would like to revisit this well-established semantic tradi-
tion and accommodate another equally well-established tradition, coming this
time from verification and model-checking. We find especially important to
address and to clarify an apparent antagonism between the two traditions.
Model-checking is generally interested in infinitary (typically ω-regular) induc-
tive and coinductive behaviors of programs which lie obviously far beyond the
scope of Scott continuity. For that reason, we introduce a variant of the rela-
tional semantics of linear logic where the exponential modality, noted in this
context

A 7→  A

is defined as the set of finite or countable multisets of the set A. From this
follows that a proof or a program

A ⇒ B =  A ( B.

is allowed in the resulting infinitary semantics to explore a possibly countable
number of copies of his hypothesis A in order to reach a position in B. By
relaxing the continuity principle, this mild alteration of the original relational
semantics paves the way to a fruitful interaction between linear logic and model-
checking. This link between linear logic and model-checking is supported by
the somewhat unexpected observation that the binary relation

Y (f) : !X −→ A

defining the fixpoint Y(f) associated to a morphism

f : !X ⊗ !A −→ A

in the familiar (and thus finitary) relational semantics of linear logic is defined
by performing a series of explorations of the infinite binary tree

comb =

•
◦ •
◦ •
◦ •
◦
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by an alternating tree automaton 〈Σ , Q , δf 〉 on the alphabet Σ = {•, ◦}
defined by the binary relation f . The key idea is to define the set of states of
the automaton as Q = A ]X and to associate a transition

δf (•, a) = (x1 ∧ · · · ∧ xk , a1 ∧ · · · ∧ an )

of the automaton to any element (([x1, . . . , xk], [a1, . . . , an]), a) of the binary re-
lation f , where the xi’s are elements ofX and the ai’s are elements of A ; and to
let the symbol ◦ accept any state x ∈ X. Then, it appears that the traditional
definition of the fixpoint operator Y(f) as a binary relation !X → A may be
derived from the construction of run-trees of the tree-automaton 〈Σ , Q , δf 〉
on the infinitary tree comb. More precisely, the binary relation Y (f) con-
tains all the elements ([x1, . . . , xk], a) such that there exists a finite run-tree
(called witness) of the tree automaton 〈Σ , Q , δf 〉 accepting the state a with
the multiset of states [x1, . . . , xk] collected at the leaves ◦. As far as we know,
this automata-theoretic account of the traditional construction of the fixpoint
operator Y(f) in the relational semantics of linear logic appeared for the first
time in [GM15c], and we carefully develop it in §9.5.

Once this healthy bridge between linear logic and tree automata theory
identified, it makes sense to study variations of the relational semantics inspired
by verification. This is precisely the path we follow here by replacing the fini-
tary interpretation !A of the exponential modality by the finite-or-countable one
 A. This alteration enables us to define an inductive as well as a coinductive
fixpoint operator Y in the resulting infinitary relational semantics. The two
fixpoint operators only differ in the acceptance condition applied to the run-tree
witness. We carry on in this direction, and introduce a colored variant of the re-
lational semantics, designed in such a way that the tree automaton 〈Σ , Q , δf 〉
associated to a morphism f : !X ⊗ !A → A defines a parity tree automaton.
This leads us to the definition of an inductive-coinductive fixpoint operator Y
tightly connected to our investigations on higher-order model-checking.

9.4 Fixpoint operators in models of linear logic

We want to extend linear logic with a fixpoint rule with parameters:

!X⊗ !A ` A
fix

!X ` A

In order to interpret it in a Seely category, we need a parametrized fixpoint
operator, defined below as a family of functions

YX,A : C (!X ⊗ !A , A ) −→ C (!X,A)

parametrized by X,A and satisfying two elementary conditions, mentioned
for instance by Simpson and Plotkin in [SP00] in the framework of cartesian
categories, and which we adapt here to Seely categories.

• Naturality: for any g : !X ( Z and f : !Z ⊗ !A( A, the diagram:
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!X

digX
��

YX,A(k) // A

! !X
! g

// !Z

YZ,A(f)

OO

commutes, where the morphism k : !X ⊗ !A ( A in the upper part of
the diagram is defined as the composite

!X ⊗ !A
k //

digX ⊗ !A

��

A

! !X ⊗ !A
! g⊗ !A

// !Z ⊗ !A

f

OO

• Parametrized fixpoint property: for any f : !X ⊗ !A ( A, the
following diagram commutes:

!X

! ∆X

��

YX,A(f) // A

! (X &X )

(m2
X,X)−1

��

!X ⊗ !A

f

OO

!X ⊗ !X
!X ⊗digX

// !X ⊗ ! !X

!X ⊗ ! YX,A(f)

OO

These two equations are fundamental but they do not reflect all the equa-
tional properties of the fixpoint operator in domain theory. For that reason,
Bloom and Esik introduced the notion of Conway theory in their seminal work
on iteration theories [BÉ93, BÉ96]. This notion was then rediscovered and
adapted to cartesian categories by Hasegawa [Has99], by Hyland and by Simp-
son and Plotkin [SP00]. Hasegawa and Hyland moreover independently estab-
lished a nice correspondence between the resulting notion of Conway fixpoint
operator and the notion of trace operator introduced a few years earlier by
Joyal, Street and Verity [JSV96]. Here, we adapt in the most straightforward
way this notion of Conway fixpoint operator to the specific setting of Seely
categories. Before going any further, we find useful to introduce the following
notation: for every pair of morphisms

f : !X ⊗ !B( A and g : !X ⊗ !A( B

we write f ? g : !X ⊗ !A( A for the composite:
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!X ⊗ !A

! ∆X ⊗ !A
��

f?g // A

! (X &X )⊗ !A

(m2
X,X)−1⊗ !A

��

!X ⊗ !B

f

OO

!X ⊗ !X ⊗ !A

!X ⊗m2
X,A

��

!X ⊗ ! ( !X ⊗ !A )

!X ⊗ ! g

OO

!X ⊗ ! (X &A )
!X ⊗digX&A

// !X ⊗ ! ! (X &A )

!X ⊗ ! (m2
X,A)−1

OO

A Conway operator is then defined as a parametrized fixpoint operator satis-
fying the two additional properties below:

• Parametrized dinaturality: for any f : !X ⊗ !B( A and g : !X ⊗ !A(
B, the following diagram commutes:

!X

! ∆X

��

YX,A(f?g) // A

! (X &X )

(m2
X,X)−1

��

!X ⊗ !B

f

OO

!X ⊗ !X
!X ⊗digX

// !X ⊗ ! !X

!X ⊗ ! YX,B(g?f)

OO

• Diagonal property: for every morphism f : !X ⊗ !A⊗ !A ( A,

YX,A ( (m2
X,A)−1 ◦ YX&A,A ( f ◦ ( (m2

X,A)−1⊗ !A ) ) (9.9)

belongs to !X ( A, since

! (X &A )⊗ !A
(m2

X,A)−1⊗ !A
// !X ⊗ !A⊗ !A

f // A

is sent by YX&A,A to a morphism of ! (X &A )( A, so that

(m2
X,A)−1 ◦ YX&A,A ( f ◦ ( (m2

X,A)−1⊗ !A ) : !X ⊗ !A( A

to which the fixpoint operator YX,A can be applied, giving the morphism
(9.9) of !X ( A. This morphism is required to coincide with the mor-
phism YX,A(k), where the morphism k : !X ⊗ !A→ A is defined as the
composite

!X ⊗ !A

!X ⊗ ! ∆A

��

k // A

!X ⊗ ! (A&A )
!X ⊗ (m2

A,A)−1

// !X ⊗ !A⊗ !A

f

OO
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Just as expected, we recover in that way the familiar notion of Conway fix-
point operator as formulated in any cartesian category by Hasegawa, Hyland,
Simpson and Plotkin:

Proposition 18. A Conway operator in a Seely category is the same thing
as a Conway operator (in the sense of [Has99, SP00]) in the cartesian closed
category associated to the exponential modality by the Kleisli construction.

Proof. In [SP00], Simpson and Plotkin give four equations defining Conway
operators in cartesian closed categories. As proved by Seely in [See89], in
a Seely category C (see Definition 32), the coKleisli construction applied to
the exponential comonad ! gives birth to a cartesian closed category C!. This
cartesian closed category C! is defined in terms of the objects and morphisms
of the original Seely category C. The proposition can then be proved simply by
writing the equations found in [SP00] using the morphisms of C used to define
C!.

9.5 A fixpoint operator in the relational semantics

The relational model of linear logic can be equipped with a natural parameter-
ized fixpoint operator Y which transports any binary relation

f : !X ⊗ !A ( A

to the binary relation
YX,A(f) : !X ( A

defined in the following way:

YX,A (f) = { (w, a) | ∃witness ∈ run-tree(f, a) with w = leaves(witness)
and witness is accepting } (9.10)

where run-tree(f, a) is the set of “run-trees” defined as trees with nodes labeled
by elements of the set X ]A and such that:

• the root of the tree is labeled by a,

• the inner nodes are labeled by elements of the set A,

• the leaves are labeled by elements of the set X ]A,

• and for every node labeled by an element b ∈ A:

– if b is an inner node, and letting a1, . . . , an denote the labels of its
children belonging to A and x1, . . . , xm the labels belonging to X:

b

an· · ·a1xm· · ·x1

then (([x1, . . . , xm], [a1, . . . , an]) , b) ∈ f
– if b is a leaf, then (([ ], [ ]), b) ∈ f .
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and where leaves(witness) is the multiset obtained by enumerating the labels
of the leaves of the run-tree witness. Recall that multisets account for the
number of occurrences of an element, so that leaves(witness) has the same
number of elements as there are leaves in the run-tree witness. Moreover,
leaves(witness) is independent of the enumeration of the leaves, since multisets
can be understood as abelian versions of lists. Finally, we declare that a run-
tree is accepting when it is a finite tree.

Proposition 19. The fixpoint operator Y is a Conway operator on Rel.

Proof. We need to check that Y satisfies the four diagrams defining Conway
operators of §9.4.

Naturality. Let g : !X ( Z and f : !Z ⊗ !A( A be two morphisms in Rel.
We need to check that the diagram:

!X

digX
��

YX,A(k) // A

! !X
! g

// !Z

YZ,A(f)

OO

commutes, where the morphism k : !X ⊗ !A( A is defined as the composite

!X ⊗ !A
k //

digX ⊗ !A

��

A

! !X ⊗ !A
! g⊗ !A

// !Z ⊗ !A

f

OO

We start by expliciting the morphism k. An element ((u, [a1, . . . , an]), b), where
u ∈!X, is in k if and only if

• u = [x11, . . . , x1k1 , . . . , xi1, . . . , xiki , . . . , xm1, . . . , xmkm ],

• for every i ∈ {1, . . . ,m}, ([xi1, . . . , xiki ], zi) ∈ g,

• (([z1, . . . , zm], [a1, . . . , an]), b) ∈ f .

Let us now consider (u, b) ∈ YX,A(k), and prove that it is in digX ◦ ! g ◦
YZ,A(f). By definition of YX,A(k), u is the multiset of leaves of a finite run-
tree Tk obtained by pasting together trees of the shape:

a′

an· · ·a1xmkm· · ·xm1· · ·x1k1
· · ·x11 (9.11)

where (([x11, . . . , x1k1
, . . . , xm1, . . . , xmkm ], [a1, . . . , an]), a′) ∈ k. By defini-

tion of k, this element comes from (([z1, . . . , zm], [a1, . . . , an]), a′) ∈ f , and
([xi1, . . . , xiki ], zi) ∈ g for every i ∈ {1, . . . , m}. We say that zi is obtained
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from the multiset uzi = [xi1, . . . , xiki ]. Now we replace each finite tree (9.11)
in Tk by the tree

a′

an· · ·a1zm· · ·z1 (9.12)

associated to (([z1, . . . , zm], [a1, . . . , an]), a′) ∈ f . Since this only affects the
parameters, we can compose the trees (9.12) in the same manner as the trees
(9.11) were composed to produce Tk. We obtain in this way a run-tree Tf
over f . We call v ∈!Z its multiset of leaves. It follows that (v, b) ∈ YZ,A(f).
By construction, each element z ∈ v comes from a multiset uz ∈!X, and
u =

∑
z∈v uz. Since (uz, z) ∈ g, it follows that ([uz | z ∈ v], v) ∈! g. By

composition, (u, b) ∈ digX ◦ ! g ◦ YZ,A(f).

We prove the converse direction in the same way. Let us consider (u, b) ∈
digX ◦ ! g ◦ YZ,A(f), and prove that it is in YX,A(k). By construction, u =
u1 + · · ·+ un and there exists z1, . . . , zn ∈ Z such that

• ∀i ∈ { 1, . . . , n } , (ui, zi) ∈ g,

• ([z1, . . . , zn], b) ∈ YZ,A(f).

The second point implies that there is a run-tree Tf over f of root b, built from
trees of the shape

a′

al· · ·a1z′m· · ·z′1 (9.13)

with [z′1, . . . , z
′
m] ⊆ [z1, . . . , zn]. This implies that (([z′1, . . . , z

′
m], [a1, . . . , al]), a

′) ∈
f . We denote by u′i the multiset allowing to obtain z′i (via (u′i, z

′
i) ∈ g).

By composition of this element of f with (! g ◦ digX)⊗ !A we have that
((u′1 + · · · + u′n, [a1, . . . , al]), a

′) ∈ k. This allows us to built a run-tree Tk
for k, obtained by replacing each tree (9.13) by the tree

a′

an· · ·a1xmkm· · ·xm1· · ·x1k1· · ·x11 (9.14)

where u′i = [xi1, . . . , xiki ]. By construction, the multiset of leaves of the run-
tree Tk is u, so that (u, b) ∈ YX,A(k).

Parameterized fixpoint property. Let us consider f : !X ⊗ !A( A, and
prove that the following diagram commutes:
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!X

! ∆X

��

YX,A(f) // A

! (X &X )

(m2
X,X)−1

��

!X ⊗ !A

f

OO

!X ⊗ !X
!X ⊗digX

// !X ⊗ ! !X

!X ⊗ ! YX,A(f)

OO

We call k : !X → A the composite of the morphisms of the lower part of
the diagram. Suppose that (u, b) ∈ k, we prove that (u, b) ∈ YX,A(f). By
definition of k, we have that u = v0 + v1 + · · ·+ vn, with:

• ((v0, [a1, . . . , an]), b) ∈ f ,

• for every i ∈ {1, . . . , n}, (vi, ai) ∈ YX,A(f).

We can therefore obtain, for every i ∈ {1, . . . , n}, a run-tree of root ai and
whose leaves form a multiset vi. We plug them to

b

an· · ·a1xm· · ·x1

where we denote v0 = [x1, . . . , xm]. We obtain in this way a run-tree over
f , with root b and multiset of leaves u = v0 + v1 + · · · + vn. It follows that
(u, b) ∈ YX,A(f).

The converse direction is proven similarly. Let (u, b) ∈ YX,A(f). It follows
that there is a run-tree of root b, of multiset of leaves u, and built from trees
of the shape

a′

al· · ·a1zm· · ·z1 (9.15)

where (([z1, . . . , zm], [a1, . . . , al]), a
′) ∈ f . The root of the tree is of the following

shape:
b

a0l0· · ·a01z0m0
· · ·z01 (9.16)

This implies that (([z01, . . . , z0m0
], [a01, . . . , a0l0 ]), b) ∈ f . Each a0i is itself the

root of a tree Ti. Note that there may be no such tree, as the element of f
considered at the root may be of the form (([z1, . . . , zm], [ ]), b). Each tree Ti is
a run-tree over f , of root ai and of multiset of leaves ui, with

u = [z01, . . . , z0m0
] + u0 + · · ·+ ul0

It follows that, for every i ∈ { 0, . . . , l0 }, (ui, ai) ∈ YX,A(f). By composition
with of all these elements with (([z01, . . . , z0m0

], [a01, . . . , a0l0 ]), b) ∈ f , we get
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that (u, b) ∈ k, where k denotes again the composite of the lower part of the
diagram expressing the parameterized fixpoint property.

Parametrized dinaturality. Consider f : !X ⊗ !B( A and g : !X ⊗ !A(
B. Let us explicit in a first time the composite f ? g : !X ⊗ !A( A, defined
as:

!X ⊗ !A

! ∆X ⊗ !A
��

f?g // A

! (X &X )⊗ !A

(m2
X,X)−1⊗ !A

��

!X ⊗ !B

f

OO

!X ⊗ !X ⊗ !A

!X ⊗m2
X,A

��

!X ⊗ ! ( !X ⊗ !A )

!X ⊗ ! g

OO

!X ⊗ ! (X &A )
!X ⊗digX&A

// !X ⊗ ! ! (X &A )

!X ⊗ ! (m2
X,A)−1

OO

The relation f ? g contains precisely the elements of the shape

((u0 + u1 + · · ·+ un, v1 + · · ·+ vn) , a)

with ui ∈!X, vj ∈!A, a ∈ A and such that there exists b1, . . . , bn ∈ B satisfy-
ing:

• ∀i ∈ { 1, . . . , n} , ((ui, vi), bi) ∈ g,

• (u0, [b1, . . . , bn]) ∈ f .

To ease the remainder of the proof, we represent this composition as the fol-
lowing tree:

a

bn

anln· · ·an0znmn· · ·zn0

· · ·b1

a1l1· · ·a10z1m1· · ·z10

z0m0
· · ·z00

(9.17)
where ui = [zi0, . . . , zimi ] and vi = [ai0, . . . , aimi ]. To ease reading, we also
use the more compact representation

a

bn

vnun

· · ·b1

v1u1

u0

(9.18)

in which we use nodes labeled by multisets to represent multisets of leaves.
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We need to check that the following diagram commutes:

!X

! ∆X

��

YX,A(f?g) // A

! (X &X )

(m2
X,X)−1

��

!X ⊗ !B

f

OO

!X ⊗ !X
!X ⊗digX

// !X ⊗ ! !X

!X ⊗ ! YX,B(g?f)

OO

We denote by k the composite of the morphisms on the lower part of the
diagram. Let (u, a) ∈ YX,A(f ? g). It follows that there exists a run-tree over
f ? g of root a, and of multiset of leaves u, starting as follows:

a

anln

...

· · ·an0

...

· · ·a1l1

...

· · ·a10

...

u0 + u1 + · · ·+ un

(9.19)

By definition of f ? g, and using the tree representation of compositions given
in (9.17) and (9.18), we can expand this run-tree (9.19) as the composition of
relations starting as follows:

a

bn

anln

vnln

...

unln

· · ·an0

vn0

...

un0

un

· · ·b1

a1l1

v1l1

...

u1l1

· · ·a10

v10

...

u10

u1

u0

(9.20)
In 9.20, we see immediately that each tree rooted in bi (i ∈ { 1, . . . , n }) is a run-
tree over g ? f , so that we obtain a family of morphisms (u′i, bi) ∈ YX,B(g ? f),
where every u′i is the multiset of leaves of the run-tree over g ? f rooted at bi.
It follows that

u = u0 + u′1 + · · ·+ u′n

from which we deduce, by composing the appropriate elements, that (u, a) ∈ k.

Conversely, let (u, a) ∈ k. It follows that there exists b1, . . . , bn ∈ B and a
decomposition u = u0 + u′1 + · · ·+ u′n, such that

• for every i ∈ { 1, . . . , n } , (u′i, bi) ∈ YX,B(g ? f),

• (u0, [b1, . . . , bn]) ∈ f .
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For every i ∈ { 1, . . . , n }, there is a run-tree justifying that (u′i, bi) ∈ YX,B(g ?
f), and which can be written, by definition of g ? f and using the graphical
representation of (9.17) and (9.18), as

bi

aili

vili

...

uili

· · ·ai0

vi0

...

ui0

ui

(9.21)

The composition of the elements (u′i, bi) with (u0, [b1, . . . , bn]) ∈ f is itself
represented by the tree

a

bn

anln

vnln

...

unln

· · ·an0

vn0

...

un0

un

· · ·b1

a1l1

v1l1

...

u1l1

· · ·a10

v10

...

u10

u1

u0

(9.22)
which, as we remarked earlier, represents the run-tree

a

anln

...

· · ·an0

...

· · ·a1l1

...

· · ·a10

...

u0 + u1 + · · ·+ un

(9.23)

over f ? g justifying that (u, a) ∈ YX,A(f ? g).

Diagonal property. Let f : !X ⊗ !A⊗ !A ( A be a morphism in Rel. We
want to check that the morphism

YX,A ( (m2
X,A)−1 ◦ YX&A,A ( f ◦ ( (m2

X,A)−1⊗ !A ) ) : !X ( A (9.24)

coincides with the morphism YX,A(k), where the morphism k : !X ⊗ !A→ A
is defined as the composite

!X ⊗ !A

!X ⊗ ! ∆A

��

k // A

!X ⊗ ! (A&A )
!X ⊗ (m2

A,A)−1

// !X ⊗ !A⊗ !A

f

OO



210 CHAPTER 9. AN INFINITARY MODEL OF LINEAR LOGIC

Let us explain first how the elements of the morphism (9.24) are computed.
Each element

(([x1, . . . , xm], [a1, . . . , an], [a′1, . . . , a
′
l]) , b) ∈ f

with [x1, . . . , xm] ∈ !X, [a1, . . . , an] ∈ !A and [a′1, . . . , a
′
l] ∈ !A, can be repre-

sented as a finite tree

b

a′l· · ·a′1an· · ·a1xm· · ·x1 (9.25)

The computation of YX&A,A ( f ◦ ( (m2
X,A)−1⊗ !A ) involves the construction

of run-trees in which the elements x1, . . . but also a1, . . . are treated as parame-
ters: the ai are leaves of run-trees, while the elements a′j are iteratively pasted
to other trees of the form (9.25) and of root a′j . We denote by R the set of
these run-trees. The multiset of leaves of a run-tree of R ∈ R is an element
of ! (X &A) ∼= !X ⊗ !A. The computation of the morphism (9.24) can then
be understood as a process composing together run-trees of R on their leaves
labeled by A – which are no longer treated as parameters in this second step.

On the other hand, the morphism k contains the elements

((u, v1 + v2) , a) such that ((u, v1, v2) , a) ∈ f

It follows that a run-tree over k is again obtained by composing together trees
of the shape (9.25) but this time by considering only the elements xk ∈ X as
parameters: both the ai and a′j are pasted to other trees of the shape (9.25) to
obtain a run-tree over k. So, run-trees for (9.24) and for k are the same, but
are computed differently: the run-trees for k are computed in one step:

f

x1 x2 a1

f

a2

f

a′1

f

a′2

f

(9.26)

while the run-trees for (9.24) are computed by iterating first on the second
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copy of !A:

f

x1 x2 a1 a2 a′1

f

a′2

f

(9.27)

and in a second time by iterating on the other copy of !A, obtaining again
(9.27) as follows. The fact that (9.26) is a run-tree of k implies that the two
trees

a1

f

a2

f

are run-trees over (m2
X,A)−1 ◦ YX&A,A ( f ◦ ( (m2

X,A)−1⊗ !A ), but also that
the remaining « tiny triangles » are. It follows that, when taking the second
fixpoint operator, we can compute (9.26) by plugging them altogether. The
diagonal property follows.

Example 9. Suppose that

f = {([], a)} ∪ {([a, x], a)}

where A = {a} and X = {x}. Denote by Mn the finite multiset contain-
ing the element x with multiplicity n. Then, for every n ∈ N, we have that
(Mn, a) ∈ YX,A(f) since (Mn, a) can be obtained from the {a, x}-labeled wit-
ness run-tree of Figure 9.1, which has n+ 1 internal occurrences of the element
a, and n occurrences of the element x at the leaves. The witness tree is finite,
so that it is accepted. Now, consider the relation

g = {([a], a)} ∪ {([a, x], a)}

In that case, (Mn, a) is not an element of YX,A(g) for any n ∈ N because all
run-trees are necessarily infinite, as depicted in Figure 9.2, and thus none is
accepting. As a consequence, YX,A(g) is the empty relation.

The terminology which we have chosen for the definition of Y is obviously
automata-theoretic. In fact, as we already mentioned in §9.3, this definition
may be formulated as an exploration of the infinitary tree comb on the ranked
alphabet Σ = { • : 2, ◦ : 0 } by an alternating tree automaton associated
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a

a

a

ax

x

x

Figure 9.1: An accepting run-tree.

a

a

a

ax

x

x

Figure 9.2: A non-accepting run-tree.

to the binary relation f : !X ⊗ !A ( A. Indeed, given an element a ∈ A,
consider the alternating tree automata Af,a = 〈Σ, X ] A, δ, a〉 where, for
b ∈ A and x ∈ X:

δ(b, •) =
∨

(([x1,··· , xn),[a1,··· , am]),b)∈f

( (1, x1) ∧ · · · ∧ (1, xn) ∧ (2, a1) ∧ · · · ∧ (2, am))

δ(x, •) = ⊥ δ(x, ◦) = > δ(b, ◦) =

{
> if ([], b) ∈ f
⊥ else

Note that we allow here the use of an infinite non-deterministic choice operator∨
in formulas describing transitions, but only with finite alternation. Now, our

point is that run-tree(f, a) coincides with the set of run-trees of the alternating
automaton Af,a over the infinite tree comb depicted in §9.3. Notice that only
finite run-trees are accepting: this requires that for some b ∈ A the transition
δ(b, •) contains the alternating choice >, in which the exploration of the infinite
branch of comb stops and produces an accepting run-tree. This requires in
particular the existence of some b ∈ A such that ([], b) ∈ f .

9.6 Infinitary exponentials

Now that we established a link with tree automata theory, it is tempting to
relax the finiteness acceptance condition on run-trees applied in the previous
section. To that purpose, however, we need to relax the usual assumption that
the formulas of linear logic are interpreted as finite or countable sets. Suppose
indeed that we want to interpret the exponential modality

 A

as the set of finite or countable multisets, where a countable multiset of elements
of A is defined as a function

A −→ N

with finite or countable support. Quite obviously, the set

 N

has the cardinality of the reals 2ℵ0 . We thus need to go beyond the traditionally
countable relational interpretations of linear logic. However, we may suppose
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that every set A interpreting a formula has a cardinality below or equal 2ℵ0 . In
order to understand why, it is useful to reformulate the elements of  A as finite
or infinite words of elements of A modulo an appropriate notion of equivalence
of finite or infinite words up to permutation of letters. Given a finite word u
and a finite or infinite word w, we write

u v w

when there exists a finite prefix v of w such that u is a prefix of v modulo
permutation of letter. We write

w1 ' w2
def⇐⇒ ∀u ∈ A∗, u v w1 ⇐⇒ u v w2

where A∗ denotes the set of finite words on the alphabet A.

Proposition 20. There is a one-to-one relationship between the elements of
 A and the finite or infinite words on the alphabet A modulo the equivalence
relation '.

Proof. Let us consider the application ϕ : ((A∗ ∪ Aω)/ ') −→  A defined as
follows: for every equivalence class ŵ containing a word w ∈ A∗ ∪Aω, ϕ maps
ŵ to the multiset mw : A → N defined as mw(a) = |w|a for every a ∈ A.
Note that mw has a finite or countable support, as w is finite or countable.

ϕ is properly defined: for every w, w′ ∈ ŵ, mw = mw′ . Indeed, suppose
that it is not the case. This implies that there exists a letter a ∈ A such
that |w|a 6= |w′|a. Suppose, without loss of generality, that |w|a > |w′|a.
Note that this implies that |w′|a is a finite number. By hypothesis, w ' w′,
so that ∀u ∈ A∗, u v w ⇐⇒ u v w′. Let us consider the finite word
u = a|w

′|a+1. Then u v w but u v w′ does not hold, as there is no finite prefix
of w′ containing |w′|a + 1 occurrences of the letter a. This contradicts w ' w′.
It follows that ϕ is properly defined.

Let us prove that ϕ is injective. Suppose that there exists two words w, w′ ∈
A∗ ∪ Aω such that ŵ 6= ŵ′ but ϕ(ŵ) = ϕ(ŵ′). This implies that mw = mw′ .
Since ŵ 6= ŵ′, there exists a finite word u ∈ A∗ such that either u 6v w and
u v w′, or that u v w and u 6v w′. Let us treat the first case, without
loss of generality. This implies that there exists a letter a ∈ A such that
|w|a < |u|a ≤ |w′|a. It follows that |w|a 6= |w′|a, which contradicts mw = mw′ .

To conclude, let us prove that ϕ is surjective. Letm ∈  A be a multiset; it is
at most countable, as it is a collection of at most countably many elements with
multiplicity at most ω. It follows that its cardinality is bounded by ℵ0×ℵ0 =
ℵ0. We can thus enumerate these elements, and build in this way a word
w ∈ A∗ ∪ Aω such that for every a ∈ A, |w|a = m(a). By construction,
ϕ(ŵ) = m.

Proposition 20 means in particular that, for every set A, there is a surjection
from the set A∞ = A∗ ] Aω of finite or infinite words on the alphabet A to
the set  A of finite or countable multisets. An element of the equivalence class
associated to a multiset is called a representation of this multiset. Notice that
if a set A has cardinality at most 2ℵ0 , the set A∞ is itself bounded by 2ℵ0 ,
since (2ℵ0)ℵ0 = 2ℵ0×ℵ0 = 2ℵ0 . This property leads us to define the following
extension of Rel:
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Definition 36. The category Rel has the sets A,B of cardinality at most 2ℵ0

as objects, and binary relations f ⊆ A × B between A and B as morphisms
A→ B.

Since a binary relation between two sets A and B is a subset of A × B,
the cardinality of a binary relation in Rel is also bounded by 2ℵ0 . Note that
the hom-set Rel(A,B) is in general of higher cardinality than 2ℵ0 , yet it is
bounded by the cardinality of the powerset of the reals. It is immediate to
establish that:

Proposition 21. The category Rel is ∗-autonomous and has finite products.
As such, it provides a model of multiplicative additive linear logic.

Proof. It is well-known that the category with all sets as objects and their
relations as morphisms is ∗-autonomous and has finite products. Rel is a
subcategory of this category, contains the dualizing object ⊥ = 1, and is stable
under finite tensors and finite products. It follows that it is a ∗-autonomous
category with finite products.

There remains to show that the finite-or-countable multiset construction  
defines a categorical interpretation of the exponential modality of linear logic.
Again, just as in the finitary case, we find convenient to check that Rel together
with the finite-or-countable multiset interpretation  satisfy the axioms of a
Seely category. In that specific formulation of a model of linear logic, the first
property to check is that:

Proposition 22. The finite-or-countable multiset construction  defines a
comonad on the category Rel.

The counit of the comonad is defined as the binary relation

derA :  A −→ A

which relates [a] to a for every element a of the set A. In order to define
its comultiplication, we need first to extend the notion of sum of multisets to
the infinitary case, which we do in the obvious way, by extending the binary
sum of N to possibly infinite sums in its completion N. In order to unify
the notation for finite-or-countable multisets with the one for finite multisets
used in Section 5.2, we find convenient to denote by [a1, a2, · · · ] the countable
multiset admitting the representation a1a2 · · ·

We are now ready to describe the comultiplication

digA :  A →   A

of the comonad  as a straightforward generalization of the finite case:

digA = {(w1 + · · ·+ wk, [w1, · · · , wk]) | ∀i ∈ {1, · · ·n}, wi ∈  A}
∪ {(w1 + · · ·+ wk + · · · , [w1, · · · , wk, · · · ]) | ∀i ∈ N, wi ∈  A}
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Proof of Proposition 22. We need to prove that dig and der are natural
transformations making the following diagrams commute for every object A ∈
Rel:

 A
digA //

digA

��

  A

dig A

��
  A

 digA

//    A

 A   A
 derAoo der A //  A

 A

id A

<<

id A

bb

digA

OO

The naturality of dig and der is proved in an immediate way. Let us start
by proving that the diagram on the left commutes. It is instructive to exhibit
first the elements of the relations dig A and  digA. Elements of dig A are of
the form

([w11, w12, . . .] + [w21, w22, . . .] + · · · , [[w11, w12, . . .], [w21, w22, . . .], . . .])

where each enumeration may be either finite or infinite, and where each wij is
an element of  A. Now elements of  digA are of the form

([w11 + w12 + · · · , w21 + w22 + · · · , . . .], [[w11, w12, . . .], [w21, w22, . . .], . . .])

where, again, the wij are in  A, and the enumerations may be either finite or
infinite.

Let us consider an element of dig A ◦ digA. It is an element of the form

(w11 + w12 + · · ·+ w21 + w22 + · · · , [[w11, w12, . . .], [w21, w22, . . .], . . .])

obtained by composing the element

(w11 + w12 + · · ·+ w21 + w22 + · · · , [w11, w12, . . . , w21, w22, . . .])

of digA with the element

([w11, w12, . . .] + [w21, w22, . . .] + · · · , [[w11, w12, . . .], [w21, w22, . . .], . . .])

of dig A, by using the fact that

[w11, w12, . . . , w21, w22, . . .] = [w11, w12, . . .]+[w21, w22, . . .]+· · · , [[w11, w12, . . .]

Consider now the element

((w11 + w12 + · · · ) + (w21 + w22 + · · · ) + · · · , [w11 + w12 + · · · , w21 + w22 + · · · , . . .])

of digA, and compose it with the element

([w11 + w12 + · · · , w21 + w22 + · · · , . . .], [[w11, w12, . . .], [w21, w22, . . .], . . .])

of  digA. We obtain in this way that

(w11 + w12 + · · ·+ w21 + w22 + · · · , [[w11, w12, . . .], [w21, w22, . . .], . . .])
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is also in  digA◦digA. Therefore dig A◦digA ⊆  digA◦digA. The converse
inclusion is proved similarly.

We consider now the diagram on the right. The first thing is to prove that
 derA ◦ digA = id A. Let us consider w = [a1, . . .] ∈  A. (w,w) ∈ idA, and
(w,w) ∈  derA ◦ digA as well, since we can compose the elements

(w, [[a1], . . .]) ∈ digA

and
([[a1], . . .], [a1, . . .]) ∈  derA

Now if (u,w) ∈  derA ◦digA, it is obtained by composing an element (u, v) ∈
digA with an element (v, w) ∈  derA. Since (v, w) ∈  derA, v is a multiset
of singleton multisets: v = [[a1], . . .], and w = [a1, . . .]. By definition of digA,
u = w so that (u,w) ∈ idA.

We now have to prove that der A ◦digA = id A. Consider w = [a1, . . .] ∈
 A. (w,w) ∈ idA, and (w,w) ∈ der A ◦ digA as well, since we can compose
the elements

(w, [w], . . .]) ∈ digA

and
([w], w) ∈ der A

Now if (u,w) ∈ der A ◦ digA, it is obtained by composing an element (u, v) ∈
digA with an element (v, w) ∈ der A. Since (v, w) ∈ der A, v is a multiset
containing just one multiset of elements of A: v = [w]. By definition of digA,
u = w so that (u,w) ∈ idA.

Seely isomorphisms. One then defines the isomorphism

m0 = {(?, [])} : 1 −→  > (9.28)

and the family of isomorphisms

m2
A,B :  A ⊗  B −→  (A&B ) (9.29)

indexed by the objects A,B of the category Rel which relates every pair
(wA, wB) of the set  A ⊗  B with the finite-or-countable multiset

({1} × wA) + ({2} × wB) ∈  (A&B )

where the operation {1} × wA maps the finite-or-countable multiset wA =
[a1, a2, . . .] of elements ofA to the finite-or-countable multiset [(1, a1), (1, a2), . . .]
of  (A&B). We define {2}×wB similarly. Recall that Seely categories are de-
fined in Definition 32, page 111. We check carefully that

Proposition 23. The comonad  on the category Rel together with the iso-
morphisms (9.28) and (9.29) satisfy the coherence axioms of a Seely category.
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In other words, this comonad  over the category Rel induces a new and
infinitary model of propositional linear logic. The next section is devoted to
the definition of two different fixpoint operators living inside this new model.

Proof. The naturality of m0 and (m2
A,B)A,B is immediate. We need to check

that the diagrams of Definition 32 commute in Rel. Let A and B be two objects
of Rel, we start by the diagram

 A⊗  B
m2
A,B //

digA⊗digB

��

 (A&B)

digA&B
��

  (A&B)

 〈 π1, π2〉
��

  A⊗   B
m2
 A, B //  ( A&  B)

The elements of m2
 A, B ◦(digA⊗digB) are obtained by composing an element

(([a11, a12, . . . , a21, a22, . . .], [b11, b12, . . . , b21, b22, . . .]) ,
([[a11, a12, . . .], [a21, a22, . . .], . . .], [[b11, b12, . . .], [b21, b22, . . .], . . .]))

of digA ⊗ digB with the element

(([[a11, a12, . . .], [a21, a22, . . .], . . .], [[b11, b12, . . .], [b21, b22, . . .], . . .]) ,
([(1, [a11, a12, . . .]), (1, [a21, a22, . . .]), . . .], [(2, [b11, b12, . . .]), (2, [b21, b22, . . .]), . . .]))

of m2
 A, B . It follows that the elements of m2

 A, B ◦(digA⊗digB) are precisely
these of the shape

(([a11, a12, . . . , a21, a22, . . .], [b11, b12, . . . , b21, b22, . . .]) ,
([(1, [a11, a12, . . .]), (1, [a21, a22, . . .]), . . .], [(2, [b11, b12, . . .]), (2, [b21, b22, . . .]), . . .]))

We consider such an element, and prove that it is in  〈 π1, π2〉 ◦ digA&B ◦
m2
A,B . We have that

(([a11, a12, . . . , a21, a22, . . .], [b11, b12, . . . , b21, b22, . . .]) ,
(([(1, a11), (1, a12), . . . , (1, a21), (1, a22), . . . , (2, b11), (2, b12), . . . , (2, b21), (2, b22), . . .]))

is in m2
A,B . We compose it with the element

((([(1, a11), (1, a12), . . . , (1, a21), (1, a22), . . . , (2, b11), (2, b12), . . . , (2, b21), (2, b22), . . .]) ,
(([[(1, a11), (1, a12), . . .], [(1, a21), (1, a22), . . .], . . . , [(2, b11), (2, b12), . . .], [(2, b21), (2, b22), . . .], . . .]))

of digA&B , and we compose the result with the element

((([[(1, a11), (1, a12), . . .], [(1, a21), (1, a22), . . .], . . . , [(2, b11), (2, b12), . . .], [(2, b21), (2, b22), . . .], . . .]) ,
(([(1, [a11, a12, . . .]), (1, [a21, a22, . . .]), . . . , (2, [b11, b12, . . .]), (2, [b21, b22, . . .]), . . .]))

of  〈 π1, π2〉, obtaining the desired result. The converse direction is proved
similarly.
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We now focus on the diagram

( A⊗  B)⊗  C α //

m⊗ C
��

 A⊗ ( B ⊗  C)

 A⊗m
��

 (A&B)⊗  C

m

��

 A⊗  (B & C)

m

��
 ((A&B) & C)

 α //  (A& (B & C))

An element of the “down-left” relation  α ◦m ◦ (m⊗  C) is obtained by com-
posing an element

((([a1, a2, . . .], [b1, b2, . . .]) , [c1, c2, . . .]) ,
([(1, a1), (1, a2), . . . , (2, b1), (2, b2), . . .], [c1, c2, . . .]))

of m⊗  C with an element

(([(1, a1), (1, a2), . . . , (2, b1), (2, b2), . . .], [c1, c2, . . .]) ,
([(1, (1, a1)), (1, (1, a2)), . . . , (1, (2, b1)), (1, (2, b2)), . . . , (2, c1), (2, c2), . . .]))

of m, and then by composing the result with the element

(([(1, (1, a1)), (1, (1, a2)), . . . , (1, (2, b1)), (1, (2, b2)), . . . , (2, c1), (2, c2), . . .]) ,
([(1, a1)), (1, a2)), . . . , (2, (1, b1)), (2, (1, b2)), . . . , (2, (2, c1)), (2, (2, c2)), . . .]))

of  α. So the relation  α ◦ m ◦ (m ⊗  C) is precisely made of the elements
which can be written as

((([a1, a2, . . .], [b1, b2, . . .]) , [c1, c2, . . .]) ,
([(1, a1)), (1, a2)), . . . , (2, (1, b1)), (2, (1, b2)), . . . , (2, (2, c1)), (2, (2, c2)), . . .]))

with ai ∈ A, bj ∈ B, ck ∈ C. Let us consider such an element, and prove that
it belongs to m ◦ ( A⊗m) ◦ α. We obtain it by composing the element

((([a1, a2, . . .], [b1, b2, . . .]) , [c1, c2, . . .]) ,
([a1, a2, . . .], ([b1, b2, . . .], [c1, c2, . . .])))

of the associativity isomorphism α with the element

(([a1, a2, . . .], ([b1, b2, . . .], [c1, c2, . . .])) ,
([a1, a2, . . .], ([(1, b1), (1, b2), . . . , (2, c1), (2, c2), . . .])))

of ( A⊗m). We then compose the result with the element

(([a1, a2, . . .], ([(1, b1), (1, b2), . . . , (2, c1), (2, c2), . . .])) ,
([(1, a1), (1, a2), . . .], ([(1, (1, b1)), (1, (1, b2)), . . . , (1, (2, c1)), (1, (2, c2)), . . .])))

and we obtain in this way that

 α ◦m ◦ (m⊗  C) ⊆ m ◦ ( A⊗m) ◦ α

The converse inclusion is proved in the exact same way.
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We now have to consider two diagrams concerning the compatibility of m
with the units:

 A⊗ 1
ρ⊗ //

 A⊗m
��

 A

 A⊗  > m //  (A&>)

 ρ&

OO
1⊗  B λ⊗ //

m⊗ B
��

 B

 >⊗  B m //  (>&B)

 λ&

OO

We restrict our attention to the one on the left, as the proof of the other is
exactly the same modulo the commutation isomorphism γ : A ⊗ B → B ⊗ A
of Rel. We need to prove that  ρ&

A ◦m ◦ ( A⊗m) = ρ⊗ A, where

ρ⊗A = { ((a, ?) , a) | a ∈ A } : A⊗ 1→ A

and
ρ&
A = { ((1, a) , a) | a ∈ A } : A&> → A

are the left unit morphisms for the tensorial and cartesian structure, respec-
tively. Let us consider (([a1, a2, . . .], []) , [a1, a2, . . .]) ∈ ρ⊗ A and prove that it
is in  ρ&

A ◦m ◦ ( A⊗m). We obtain it by composing the element

(([a1, a2, . . .], ?) , ([a1, a2, . . .], [])) ∈  A⊗m0

with the element

(([a1, a2, . . .], []) , [(1, a1), (1, a2), . . .]) ∈ m2
A,>

and then with the element

([(1, a1), (1, a2), . . .], [a1, a2, . . .]) ∈  ρ&
A

In this way we get the inclusion ρ⊗ A ⊆  ρ&
A ◦m ◦ ( A ⊗m). The converse

inclusion is proven in the exact same way.

The commutation of the last diagram:

 A⊗  B
γ //

m

��

 B ⊗  A

m

��
 (A&B)

 γ //  (B &A)

is particularly straightforward to prove.

9.7 Inductive and coinductive fixpoint operators

In the infinitary relational semantics, a binary relation

f :  A ( B

may require a countable multiset w of elements (or positions) of the input
set A in order to reach a position b of the output set B. For that reason, we
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need to generalize the notion of alternating tree automata to finite-or-countable
alternating tree automata, a variant in which formulas defining transitions use
of a possibly countable alternation operator

∧
and of a possibly countable non-

deterministic choice operator
∨
. The generalization of the family of automata

Af,a of §9.5 leads to a new definition of the set run-tree(f, a), in which witness
trees may have internal nodes of countable arity. A first important observation
is the following result:

Proposition 24. Given f :  A⊗ X ( A, a ∈ A, and witness ∈ run-tree(f, a),
the multiset leaves(witness) is finite or countable.

Proof. Let us consider the worst case, in which witness is a tree of countable
depth, and build only from elements

([(1, x1), (1, x2), . . . , (2, a1), (2, a2), . . .], b) ∈ f

where the enumerations are countable, so that it looks locally as

b

· · ·a2a1· · ·x2x1

where the enumerations are, again, countable. It follows that the cardinal of
the set of leaves of witness is∑

n∈N\{0}

ℵn0 =
∑

n∈N\{0}

ℵ0 = ℵ0 × ℵ0 = ℵ0

so that leaves(witness) is countable.

An important consequence of this observation is that the definition of the
Conway operator Y given in Equation (9.10) can be very simply adapted to
the finite-or-countable interpretation of the exponential modality  in the Seely
category Rel. Moreover, in this infinitary model of linear logic, we can give
more elaborate acceptation conditions, among which two are canonical:

• considering that any run-tree is accepting, one defines the coinductive
fixpoint on the model, which is the greatest fixpoint over Rel.

• on the other hand, by accepting only trees without infinite branches,
we obtain the inductive interpretation of the fixpoint, which is the least
fixpoint operator over Rel.

It is easy to see that the two fixpoint operators are different: recall Exam-
ple 9, and observe that the binary relation g is also a relation in the infinitary
semantics. It turns out that its inductive fixpoint is the empty relation, while
its coinductive fixpoint coincides with the relation

{(Mn, a) | n ∈ N} ∪ {([x, x, · · · ], a)}

In this coinductive interpretation, the run-tree obtained by using infinitely
([x, a], a) and never ([a], a) is accepting and is the witness tree generating
{([x, x, · · · ], a)}.
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Proposition 25. The inductive and coinductive fixpoint operators over the
infinitary relational model of linear logic are Conway operators on this Seely
category.

Proof. This proposition can be proved by adapting the proof of Proposition 19.
The arguments are the same, except that we need to consider finite-or-countable
multisets and therefore trees with countable branching. In the coinductive case,
we also need to consider trees of infinite depth. Let us briefly explain why the
property holds.

• Naturality. The core argument of the proof of naturality is the fact that
every tree

a′

· · ·a2a1· · ·u2u1 (9.30)

representing the fact that ((u1 + u2 + · · · , [a1, a2, . . .]) , a
′) ∈ k can be

decomposed as before as the tree

a′

· · ·a2a1· · ·z2

u2

z1

u1 (9.31)

provided that ∀i, (ui, zi) ∈ f , so that any run-tree over k justifying
that (u, a) ∈ YX,A(k) can be turned into a run-tree over f differing
only by its arguments, and justifying that (v, a) ∈ YZ,A(f). Com-
posing (v, a) with (digX ⊗ !A) ◦ ( g⊗ !A), we obtain as earlier that
(u, a) ∈ (digX ⊗ !A) ◦ ( g⊗ !A) ◦ YZ,A(f). The converse inclusion is
proved in the same way.

• Parametrized fixpoint property. This is again a straightforward ex-
tension of the proof of Proposition 19 to the case where trees may be of
countable width. The key property here is that any run-tree whose root
is of the shape

a′

· · ·a2a1u0 (9.32)

gives a family of run-trees of root ai, each justifying that (ui, ai) ∈
YX,A(f), with ((u0, [a1, a2, . . .]), a

′) ∈ f . It follows that the relation
YX,A(f) is contained in the one defined by the lower part of the diagram
describing the property. The converse inclusion is obtained similarly, as
the composition of the morphism f with elements of YX,A(f) gives a
run-tree over f whose root is of the shape (9.31) and where a run-tree of
root ai is pasted to the leaf labeled ai.
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• Parametrized dinaturality. The key point here is that the composition
diagram (9.20) can be adapted to our infinitary setting by considering its
extension to trees of countable width:

a

· · ·b2

· · ·a21

v2ln

...

u21

a20

v20

...

u20

u2

b1

· · ·a11

v11

...

u11

a10

v10

...

u10

u1

u0

(9.33)

As earlier, we obtain that the trees rooted in bi are run-trees over g ? f ,
and that we can compose their denotations with f to obtain precisely the
elements of YX,A(f ? g).

• Diagonal property. This property holds as well in this infinitary case:
it suffices to extend the figures (9.26) and (9.27) to trees of countable
width and depth to obtain the result.

9.8 The colored exponential modality

The purpose of Chapter 6 was to carefully study the Kobayashi-Ong type
system, and to excavate from its reformulation using the type system Z(A) the
very modal nature of the coloring operation. As a modality, coloring can be
interpreted in the relational semantics as a comonad defined as the functor

� : A 7→ Col ×A : Rel → Rel

equipped with the coercion maps

{(((m,a) , (m, b)) , (m, (a, b))) | a ∈ A, b ∈ B, m ∈ Col} : �A ⊗ �B → � (A ⊗ B )
{ (?, (m, ?)) | m ∈ Col } : 1 → � 1

{ ( ( max(m1, m2), a) , (m1, (m2, a) ) ) | a ∈ A } : � A → � � A
{ ( ( ε, a) , a) | a ∈ A } : � A → A

We denote the two latest morphisms as dig�A and der�A, respectively. To
distinguish clearly these morphisms from the comultiplication and counity of
the countable exponential functor  , we will now denote these morphisms as
dig A and der A. We may however, when it is clear from context, forget the
explicit annotation on dig and der.

The four morphisms we just defined induce a lax monoidal comonad 2 :
Rel → Rel on the category Rel of sets and relations. As earlier in Chapter 6,
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the set Col is a finite set of integers called colors, together with an additional
neutral color ε which should be understood as the absence of color. The colors
are introduced in order to regulate the fixpoint discipline: following the idea
behind the parity condition, in the immediate scope of an even color, fixpoints
should be interpreted coinductively, and inductively in the immediate scope of
an odd color.

Moreover, the comonad distributes (or better: commutes) with the expo-
nential modality  : there exists a distributive law [Bec69] between them.

Definition 37. A distributive law between two comonads ( ,dig ,der ) and
(�,dig�,der�) on a category C is a natural transformation

(λA :  �A→ � A)A

making the four following diagrams commute for every object A ∈ C:

  �A
 λA //  � A

λ A // �  A

 �A

dig 
�A

OO

λA

// � A

�dig A

OO

 ��A
λ�A // � �A

�λA // �� A

 �A

 dig�A

OO

λA

// � A

dig� A

OO

 A

 �A

 der�A
;;

λA

// � A

der� A
cc �A

 �A

der 
�A

;;

λA

// � A

�der A
cc

Proposition 26. There exists a distributive law λ :  2 → 2  between the
comonads  and 2. This natural transformation is defined on the object A as

λA = {([(c, a1), (c, a2), . . .], (c, [a1, a2, . . .])) | ai ∈ A, c ∈ Col} :  �A→ � A

Proof. The naturality of λ is trivial. It remains to check that the four diagrams
of Definition 37 commute. We start by the diagram:

  �A
 λA //  � A

λ A // �  A

 �A

dig 
�A

OO

λA

// � A

�dig A

OO
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An element of �dig A ◦ λA is obtained by composing an element

([(c, a11), (c, a12), . . . , (c, a21), (c, a22), . . .], (c, [a11, a12, . . . , a21, a22, . . .]))

of λA with an element

((c, [a11, a12, . . . , a21, a22, . . .]) , (c, [[a11, a12, . . .], [a21, a22, . . .], . . .]))

of �dig A. It follows that the elements of �dig A ◦ λA are precisely these of
the shape

([(c, a11), (c, a12), . . . , (c, a21), (c, a22), . . .], (c, [[a11, a12, . . .], [a21, a22, . . .], . . .]))

We consider such an element, and prove that it belongs to λ A ◦ λA ◦dig �A.
We obtain it by composing the element

([(c, a11), (c, a12), . . . , (c, a21), (c, a22), . . .], [[(c, a11), (c, a12), . . .], [(c, a21), (c, a22), . . .], . . .])

of dig �A with the element

([[(c, a11), (c, a12), . . .], [(c, a21), (c, a22), . . .], . . .], [(c, [a11, a12, . . .]), (c, [a21, a22, . . .]), . . .])

of  λA, and we compose the result with the element

([(c, [a11, a12, . . .]), (c, [a21, a22, . . .]), . . .], (c, [[a11, a12, . . .], [a21, a22, . . .], . . .]))

of λ A. So �dig A ◦ λA ⊆ λ A ◦  λA ◦ dig �A. The converse inclusion is
proved in the very same way.

We now consider the diagram

 ��A
λ�A // � �A

�λA // �� A

 �A

 dig�A

OO

λA

// � A

dig� A

OO

The elements of dig� A ◦ λA are precisely these of the shape

([(c, a1), (c, a2), . . .], (c1, (c2, [a1, a2, . . .])))

with max(c1, c2) = c. Let us consider such an element and prove that it
belongs to �λA ◦ λ�A ◦  dig�A. We obtain it by composing the element

([(c, a1), (c, a2), . . .], [(c1, (c2, a1)), (c1, (c2, a2)), . . .])

of  dig�A with the element

([(c1, (c2, a1)), (c1, (c2, a2)), . . .], (c1, [(c2, a1), (c2, a2), . . .]))

of λ�A, and we then compose the result with the element

((c1, [(c2, a1), (c2, a2), . . .]), (c1, (c2, [a1, a2, . . .])))
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of �λA. We deduce that dig� A ◦ λA ⊆ �λA ◦ λ�A ◦  dig�A. The converse
direction is proved in the very same way.

Let us now consider the diagram

 A

 �A

 der�A
;;

λA

// � A

der� A
cc

The relation  der�A is precisely composed of the elements

([(ε, a1), (ε, a2), . . .], [a1, a2, . . .])

On the other hand, der� A contains the elements

((ε, [a1, a2, . . .]), [a1, a2, . . .])

and precomposing this relation with λA precisely gives the set of elements

([(ε, a1), (ε, a2), . . .], [a1, a2, . . .])

so that  der�A = der� A ◦ λA.

Let us consider the last diagram:

�A

 �A

der 
�A

;;

λA

// � A

�der A
cc

The relation der �A is the set of all elements ([(c, a)], (c, a)). On the other
hand, �der A is the set of all elements ((c, [a]), (c, a)). By precomposition with
λA, der �A = �der A ◦ λA.

A fundamental consequence of Proposition 26 is that the two comonads can be
composed into a single comonad    defined as follows:

   =  ◦ 2

The resulting infinitary and colored relational semantics of linear logic is ob-
tained from the category Rel equipped with the composite comonad    .

Theorem 26. The category Rel together with the comonad    defines a Seely
category and thus a model of propositional linear logic.

A consequence of Theorem 26 is that the Kleisli category Rel   is a model of
the λ-calculus. The next section extends it with recursion, allowing the inter-
pretation of the λY -calculus.
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To prove Theorem 26, we may check that the diagrams defining a Seely
category are indeed commutative. An other way is to observe that the canonical
morphism

d�A,B : � (A&B)→ �A & �B
= { ((c, (1, a)), (1, (c, a))) | a ∈ A, c ∈ Col }

∪ { ((c, (2, b)), (2, (c, b))) | b ∈ B, c ∈ Col }

is obviously an isomorphism in Rel, so that the theorem is a direct consequence
of the following proposition:

Proposition 27. Let C be a category endowed with a comonad  turning it
into a Seely category. Let � be a comonad on C distributing over  by means
of a distributive law λ :  2 → 2  . Suppose moreover that the canonical
morphism � (A&B)→ �A & �B is an isomorphism in the category C. Then
the composit comonad  ◦� defines a Seely category over C.

To prove it, we use some propositions appearing in [Mel09], and relying on the
notion of linear-non-linear adjunction:

Definition 38. A linear-non-linear adjunction is a symmetric monoidal ad-
junction between lax symmetric monoidal functors

(M,&,>)

(L,m)

##
⊥ (L,⊗, 1)

(M,n)

cc

in which the categoryM is equipped with a cartesian product & and a terminal
object >.

The notions of symmetric monoidal adjunction and of lax symmetric monoidal
functors appear in [Mel09].

Proposition 28 ([Mel09, Proposition 24]). Every Seely category defines a
linear-non-linear adjunction, and thus a model of intuitionistic linear logic with
additives.

Proposition 29 ([Mel09, Proposition 25]). Suppose that L is a cartesian and
symmetric monoidal closed category, involved in a linear-non-linear adjunction.
Suppose moreover that the functor M : L →M is bijective on objects. Then,
the category L and the comonad L ◦M define a Seely category, whose Kleisli
category L! is isomorphic to the categoryM.

Proof of Proposition 27. By Proposition 29, it suffices to show that the
adjunction

(Rel   ,&,>)

(L   ,m   )

$$
⊥ (Rel,⊗, 1)

(M   ,n   )

ee
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is symmetric monoidal to obtain that Rel together with the composite comonad
   =  ◦ � is a Seely category. For this purpose, we just have to prove that
(L   ,m   ) : Rel   → Rel is strongly monoidal.

By Proposition 23, we have that Rel together with the comonad  is a Seely
category. Proposition 28 therefore gives us a linear-non-linear adjunction

(Rel ,&,>)

(L ,m )

$$
⊥ (Rel,⊗, 1)

(M ,n )

ee

Moreover, the functor L   factors as L ◦B, where

• L is the strongly monoidal functor from Rel to Rel,

• and B is the functor from Rel   to Rel which acts on morphisms as
follows: it transports a morphism g :  �A → B to the morphism
Bg :  �A→ �B defined as

Bg :  �A
 dig�A−−−−→  ��A

λ�A−−−→ � �A � g−−→ �B

To prove that the adjunction between L   and M   is strongly monoidal, it sim-
ply remains to show that B preserves finite products. But this is the case, as by
hypothesis the canonical morphism � (A&B)→ �A & �B is an isomorphism.

9.9 The inductive-coinductive fixpoint operator Y

We combine the results of the previous sections in order to define a fixpoint
operator Y over the infinitary colored relational model, which generalizes both
the inductive and the coinductive fixpoint operators. Note that in this infini-
tary and colored framework, we wish to define a fixpoint operator Y which
transports a binary relation

f :    X ⊗    A ( A

into a binary relation

YX,A (f) :    X ( A.

To that purpose, we adapt the definition given in §9.5 of the set run-tree(f, a)
as follows: run-trees are defined as trees with nodes labeled by elements of the
set (Col ×X) ] (Col ×A) and such that:

• the root of the tree is labeled by (ε, a),

• the inner nodes are labeled by elements of the set Col ×A,

• the leaves are labeled by elements of the set (Col ×X) ] (Col ×A),

• and for every node labeled by an element (c, b) ∈ Col ×A:
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– if (c, b) labels an inner node, and letting (c1, a1), (c2, a2), . . . de-
note the labels of the children of this node belonging to A and
(c′1, x1), (c′2, x2), . . . denote the labels belonging to X:

(c, b)

· · ·(c2, a2)(c1, a1)· · ·(c′2, x2)(c′1, x1)

then (([(c′1, x1), (c′2, x2), . . .], [(c1, a1), (c2, a2), . . .]) , b) ∈ f
– if (c, b) labels a leaf, then (([ ], [ ]), b) ∈ f .

Note that the color of an inner node (c, b) is either ε if it is the root of the
tree witness, or the color c it receives from its parent node.

We call the first element of the label of a node its color. We define the col-
ored, finite-or-countable multiset of leaves leaves(witness) ∈    X as follows.
We consider an enumeration of the leaves, which are countable by Proposi-
tion 24. We start from the empty multiset [ ] ∈    X and, for each leaf of
witness labeled with (c, x) ∈ Col×X, we add (c′, x) to leaves(witness), where
c′ is the maximal color seen on the finite path leading from the leaf we consider
to the root of witness.

It remains to explain the acceptance condition of this inductive-coinductive
fixpoint operator. As earlier, accepting all run-trees would lead to the coinduc-
tive fixpoint, while accepting only run-trees whose branches are finite would
lead to the inductive fixpoint. We define our inductive-coinductive acceptance
condition for run-trees in the expected way, directly inspired by the notion of
alternating parity tree automaton:

• a finite branch is accepting,

• an infinite branch is accepting precisely when the greatest color appearing
infinitely often in the labels of its nodes is even.

• a run-tree is accepting precisely when all its branches are accepting.

Note that a run-tree whose nodes are all of even color will be accepted inde-
pendently of its depth, as in the coinductive interpretation, while a run-tree
labeled only with odd colors will be accepted precisely when it is finite, just as
in the inductive interpretation.

After these modifications, we define as earlier the fixpoint operator Y by the
equation:

YX,A (f) = { (w, a) | ∃witness ∈ run-tree(f, a) with w = leaves(witness)
and witness is accepting } (9.34)

Theorem 27. The inductive-coinductive fixpoint operator Y defined over the
infinitary colored relational semantics of linear logic is a Conway operator.

The cartesian closed category Rel   is therefore a model of the λY -calculus.
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Proof. We explain how the proof of Proposition 19, extended to the infinitary
semantics in the proof of Proposition 25, can be accommodated to the colored
case.

• Naturality. We want to prove that the diagram

   X

digX

��

YX,A(k) // A

      X
   g

//    Z

YZ,A(f)

OO

commutes, where the morphism k :    X ⊗    A( A in the upper part of
the diagram is defined as the composite

   X ⊗    A k //

digX ⊗   A
��

A

      X ⊗    A
   g⊗   A

//    Z ⊗    A

f

OO

Suppose that (u, b) ∈ YX,A(k). It follows that there exists a winning
run-tree Tk over k of root b, and of colored, finite-or-countable multiset
of leaves u. This winning run-tree Tk is built by pasting together trees of
the shape

(c, a′)

· · ·(c2, a2)(c1, a1)· · ·u2u1 (9.35)

where ui ∈    X, aj ∈ A and

((u1 + u2 + · · · , [(c1, a1), (c2, a2), . . .]) , a′) ∈ k

Note that the multisets ui are colored. By definition of k, each tree (9.35)
can be decomposed as

(c, a′)

· · ·(c2, a2)(c1, a1)· · ·(c′2, z2)

u2

(c′1, z1)

u1 (9.36)

where

– (([(c′1, z1), (c′2, z2), . . .], [(c1, a1), (c2, a2), . . .]) , a′) ∈ f ,

– ∀i, (ui, zi) ∈ g.
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As earlier, we construct from the run-tree Tk over k the run-tree Tf over
f by replacing all the trees (9.36) in Tk by:

(c, a′)

· · ·(c2, a2)(c1, a1)· · ·(c′2, z2)(c′1, z1) (9.37)

As the trees (9.36) and (9.37) differ only on their parameters, the trees Tk
and Tf have the same infinite branches: it follows that Tf is a winning run-
tree. Let us compare the multisets u = leaves(Tk) and v = leaves(Tf ):

– the elements of leaves(Tf ) are of the shape (di, zi), where zi occurs
in Tf as in (9.37), and where di = max(c′i, c, . . .) is the maximal
color seen on the finite path from the leaf (c′i, zi) to the root of Tf ,

– the elements of leaves(Tk) are of the shape (d′j , xj), with (c′′j , xj) ∈
ui for some ui occurring in Tk as in (9.36). The color

d′j = max(c′′j , c
′
i, c, . . .) = max(c′′j , di)

is the maximal color seen on the finite path from the leaf (c′j , x) to
the root of Tk. It therefore factors as the maximum of the color c′′j
of (c′′j , xj) in ui, and of the color c′i which is the maximal color seen
on the finite path from the leaf (c′i, zi) to the root of Tk (as the paths
in Tk and in Tf only differ on parameter nodes).

It follows from the second point that, when we compose the element
(v, b) of YZ,A(f), justified by Tf , with the morphism ! g ◦ digX , we ob-
tain (u, b). Indeed, the composition with ! g updates the color c′′j labeling
the element (c′′j , xj) in ui by computing its maximum with the color di
labeling (di, zi) in v. It follows that the element xj receives the color
d′j = max(c′′j , di).

The converse direction proceeds in the very same way.

• Parametrized fixpoint property. Let f :    X ⊗    A( A. We shall
prove that the following diagram commutes:

   X

   ∆X

��

YX,A(f) // A

   (X &X )

(m2
X,X)−1

��

   X ⊗    A

f

OO

   X ⊗    X
   X ⊗digX

//    X ⊗       X

   X ⊗   YX,A(f)

OO
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We call k :    X → A the composite of the morphisms of the lower part of
the diagram. Let (u, b) ∈ YX,A(f), and T be a winning run-tree over f
of root b and such that leaves(T ) = u. The run-tree T starts as follows:

(ε, b)

· · ·(c2, a2)(c1, a1)u0 (9.38)

where ((u0, [(c1, a1), (c2, a2), . . .]), b) ∈ f . Each tree rooted at (ci, ai)
induces a winning run-tree Ti over f , obtained simply by changing the
color ci to be ε. The run-tree Ti justifies that (vi, ai) ∈ YX,A(f). We
obtain in this way the element

([�c1 v1,�c2 v2, . . .], [(c1, a1), (c2, a2), . . .]) ∈    YX,A(f)

where, given a multiset vi = [(c′i1, xi1), (c′i2, xi2), . . .], the multiset �ci vi
is defined as

�ci vi = [(max(ci, c
′
i1), xi1), (max(ci, c

′
i2), xi2), . . .]

It follows that

(u0 +�c1 v1 +�c2 v2 + · · · , b) ∈ k

Now, remark that the color c′′i of an element (c′′i , xi) ∈ vi is the maximal
color in Ti from the corresponding parameter leave to the root, so that
it is also the maximal color from this leaf to the node (ci, ai) in T . It
follows that the element of u = leaves(T ) corresponding to this leaf in
T has color max(ci, c

′′
i ). This argument shows that

u = u0 +�c1 v1 +�c2 v2 + · · ·

so that (u, b) ∈ k.

• Parametrized dinaturality. Again, considering

f :    X ⊗    B( A and g :    X ⊗    A( B

we write f ? g :    X ⊗    A( A for the composite:

   X ⊗    A

   ∆X ⊗   A
��

f?g // A

   (X &X ) ⊗    A

(m2
X,X)−1⊗   A

��

   X ⊗    B

f

OO

   X ⊗    X ⊗    A

   X ⊗m2
X,A

��

   X ⊗    (   X ⊗    A )

   X ⊗   g

OO

   X ⊗    (X &A )
   X ⊗digX&A

//    X ⊗       (X &A )

   X ⊗   (m2
X,A)−1

OO
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and we need to prove that for any f :    X ⊗    B ( A and g :    X ⊗
   A( B, the following diagram commutes:

   X

   ∆X

��

YX,A(f?g) // A

   (X &X )

(m2
X,X)−1

��

   X ⊗    B

f

OO

   X ⊗    X
   X ⊗digX

//    X ⊗       X

   X ⊗   YX,B(g?f)

OO

We call k :    X → A the morphism obtained by composing the mor-
phisms on the lower part of the diagram. As before, the point is to
decompose a winning run-tree for f ? g into a series of winning run-trees
for g ? f , composed to the function f , and to show that the colors of pa-
rameters we obtain are the same in both cases. Let (u, a) ∈ YX,A(f ? g)
and T be a winning run-tree of root a and such that leaves(T ) = u.
The tree T starts as:

(ε, a)

· · ·(c22, a22)(c21, a21)· · ·(c12, a12)(c11, a11)u0 (9.39)

with ((u0, [(c11, a11), (c12, a12), . . . , (c21, a21), (c22, a22), . . .]) , a) ∈ f ? g.
By definition of f ? g, we can decompose this tree (9.39) as

(ε, a)

· · ·(c′2, b2)

· · ·(c′′22, a22)(c′′21, a21)u02

(c′1, b1)

· · ·(c′′12, a12)(c′′11, a11)u01

u00

(9.40)

where, by definition of f ? g:

– cij = max(c′i, c
′′
ij),

– u0 = u00 +�c′1 u01 +�c′2 u02 + · · · ,
– ∀i, ((u0i, [(c

′′
i1, ai1), (c′′i2, ai2), . . .]) , bi) ∈ g,

– ((u00, [(c
′
1, b1), (c′2, b2), . . .]) , a) ∈ f .

From the decomposition (9.40), we obtain a family of trees Ti by defining
Ti to be the subtree rooted at (c′i, bi) and in which we replace the color
c′i of the root by ε, leaving all other colors unchanged. Each tree Ti is
a winning run-tree over g ? f , justifying that (vi, bi) ∈ YX,B(g ? f). By
composition with f , we get that(

u00 +�c′1 v1 +�c′2 v2 + · · · , a
)
∈ k
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It remains to prove that u = u00 + �c′1 v1 + �c′2 v2. The argument is
exactly as at the end of the proof of the parametrized fixpoint property.
The idea is essentially that the color of a parameter x in leaves(T ) is
computed by considering the path from the leaf of interest to the root of
(9.40), while in leaves(Ti) it is computed by considering the path from
the leaf to the node labeled with (c′i, bi) of (9.40). But the application
of f in the second case updates the color labeling x by computing its
maximum with c′i, so that we obtain the same colors for parameters in k
and in YX,A(f ? g).

The converse direction is proved in the same way.

• Diagonal property. Let f :    X ⊗    A ⊗    A ( A be a morphism
in Rel. As explained on p.209, the diagonal property expresses the fact
that every winning run-tree obtained by iterating on both copies of    A
at the same time can be obtained by plugging together run-trees in which
only the second copy is iterated, and conversely.

Consider a run-tree computed “in only one step”, by composing f with
the diagonal morphism on its component    A ⊗    A:

f

x1 x2 a1

f

a2

f

a′1

f

a′2

f

(9.41)
We can decompose it as run-trees where the fixpoint is only taken on
the second copy of    A, which we then plug together using the fixpoint
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operator another time. In a first step, we obtain trees as

f

x1 x2 a1 a2 a′1

f

a′2

f

(9.42)
and as

a1

f

a2

f

These run-trees are all winning, as their infinite branches are included in
the ones of (9.41). Moreover, on each finite branch leading to an element
ai ∈ A treated as a parameter in this first step, the construction col-
lects the maximal color seen on the finite path. So, the second execution
step of the fixpoint, which iterates the construction of the run-trees on
the copy of    A which was treated as a parameter by the first execution
of the fixpoint, builds infinite branches coming from infinite branches of
(9.41) and having the same color (in the infinitary sense given earlier in
this document: the color of an infinite branch is the maximal color seen
infinitely often along it). It follows that every winning run-tree (9.41)
induces a winning run-tree with the same root and the same colored mul-
tiset of leaves, and obtained by this two-step construction. Conversely,
every run-tree obtained by the two-step construction can be built in one
step, and this converse construction builds a winning run-tree from a
winning run-tree. The diagonal property follows.

9.10 Relational semantics of linear logic and
higher-model model-checking

In §5.3, we briefly explained how the relational semantics of linear logic could
be related to a system of non-idempotent intersection types using an indexed
variant of linear logic due to Bucciarelli and Ehrhard [BE00,BE01]. The idea,
as we discuss in the next section, is to extend this theoretic bridge to connect
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a non-idempotent variant of Zfix(G,A), where intersection types have finite-
or-countable multiplicities, with the cartesian closed category Rel   . We de-
note [[t]]    the relational interpretation of a λY -term t in this infinitary, colored
model. The interpretation [[δ]]    of the transition function δ is defined similarly
as we did in the relational semantics for [[δ]] in §9.2, as a subset

[[δ]] ⊆

 ¯
i∈I

   o( · · ·(    o︸ ︷︷ ︸
ari

( o

 
which may be “strengthened” in the categorical sense as a subset

[[δ†]] ⊆

 ⊗
i∈I

   

   o( · · ·(    o︸ ︷︷ ︸
ari

( o

 
Note that the color information is incorporated in the semantics following the
comonadic principles disclosed in the shift from the type system KO(A) to
Z(A): typically, the transition

δ(q0, if) = (2, q0) ∧ (2, q1)

is interpreted in the colored relational semantics as

(d, ([ ], ([(Ω(q0), q0), (Ω(q1), q1)], q0))) ∈ [[δ]]    

where d selects the component of the cartesian product corresponding to if in
δ.

As explained in §6.5, we conjecture that the proof of soundness and comp-
leteness of Theorem 19 can be smoothly adapted to a non-idempotent inter-
section type system, in which countable multiplicities may appear. We also
conjecture, as explained in the next section, that this type system can be re-
lated – using an indexed, colored and infinitary variant of tensorial logic – to
the infinitary, colored model of the λY -calculus Rel   .

This leads us to the following conjecture, which underlies the developments
of the previous sections, and would establish a clean correspondence between
the relational semantics of a higher-order recursion scheme G (seen below as
a λY -term tG , thanks to the correspondence provided by Proposition 5) and
the exploration of the associated ranked tree 〈 G 〉 by an alternating parity
automaton A:

Conjecture 1. An alternating parity tree automaton A with a set of states Q
has a winning run-tree with initial state q0 over the ranked tree 〈 G 〉 generated
by the λY -term tG if and only if there exists u ∈ [[δ†]]    such that (u, q0) ∈ [[tG ]]    ,
where [[δ†]]    =Mcount(Col × [[δ]]    ) denotes the set of finite-or-countable colored
multisets of elements of [[δ]]    .

9.11 An indexed tensorial logic with colors

In this section, we introduce a colored and indexed extension of tensorial
logic [MT10], with the aim that it can serve as a bridge between the infinitary,
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colored relational semantics defined in this chapter, and a non-idempotent vari-
ant of the type system Zfix(G,A).

Note that the interest of colored tensorial logic ranges far beyond this util-
itarian perspective, as it opens natural connections to game models. Tensorial
logic is indeed deeply rooted in Melliès’ analysis of asynchronous games [Mel06a,
Mel05], which started from the will to find a fully complete model of propo-
sitional linear logic. Melliès realized that the apparent schism between linear
logic and game semantics could be addressed by identifying strategies which
reach the same positions of the game, but using different sequentializations of
parallel events. For instance, game models distinguish two strategies for com-
puting the addition (x, y) 7→ x + y, one getting the value of x first while the
other asks for y before. On the other hand, describing addition as a proof of
linear logic gives a unique object in which the queries for x and y are paral-
lelized. This parallelization is implemented in asynchronous games, leading to
a fully complete model of linear logic [Mel05].

Tensorial logic [MT10] comes from the will to unify game semantics, linear
logic, and continuations, with the aim to provide a convenient logical framework
for the study of coeffects – an example of such coeffect being our coloring
modality. The idea is to follow at the logical level the converse of the path
that lead from “traditional” game semantics to asynchronous games, and to
introduce sequentialization in the logic. Tensorial logic is therefore obtained
from linear logic by relaxing the hypothesis that negation should be involutive;
negation plays the rôle of the exchange of players in game semantics, so that
a double negation ¬¬A of the formula A is understood as the succession of
a player and an opponent move on the arena corresponding to the formula
A. In this perspective, ¬¬A should not be collapsed to A by the traditional
involution hypothesis. Tensorial logic notably distinguishes the left and right
implementations of addition, just as game models do, and allows more generally
to reconcile logic with game semantics [Mel12].

A very interesting point in relation to our approach is that the relational
model of linear logic is a natural model of tensorial logic, in spite of its degen-
eracy – in the sense that it identifies A and ¬¬A. The derivations of tensorial
logic can be at the same time understood as strategies over the arena defined by
the formula of interest, and as the computation of denotations of this formula
in the relational model. Studying colored tensorial logic is certainly the first
step towards such a bridge between our colored, infinitary relational semantics,
and a game model with infinite colored interactions, discriminated by the par-
ity condition. This connection, unfortunately, is beyond the scope of this thesis.

Before we define the colored extension of tensorial logic, let us stress once
again that the notation �m θ is used in our intersection type system Zfix(G,A)
as a way to stress the modal nature of colors, and that it replaces for the better
the notation (θ,m) used by Kobayashi and Ong in [KO09]. As we explained
in §6.5, the discovery of the modal nature of colors is fundamental, and is not
just a matter of using the appropriate notation. In particular, it enables us to
simplify both technically and conceptually the original intersection type system
in [KO09]. By way of illustration, the original intersection type (6.1) of the
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Kobayashi-Ong intersection type system:

a : (q1,m1)→ (q2,m2)→ q

where mi = max(Ω(q),Ω(qi)), is replaced by the simpler intersection type:

a : �n1
q1 → �n2

q2 → q (9.43)

where n1 = Ω(q1) and n2 = Ω(q2). Interestingly, the color of the state q
is not mentioned in the type anymore. The reason is that this alternative
account of colors achieved in our type system is not just “simpler” than the
original one: it also reveals a deep and somewhat unexpected connection with
linear logic, since as we will see, this “disparition” of the color Ω(q) in (9.43)
is related to the well-known linear decomposition A ⇒ B = !A ( B of the
intuitionistic implication in linear logic. One essential difference however is that
the exponential modality « ! » of linear logic is replaced by a family of modal
boxes Ω(m) which formally defines what Melliès calls a parametric comonad
in [Mel14b] [Mel06b].

This key observation enables us to look for a translation of the intersection
type system Zfix(G,A) into an infinitary variant of linear logic equipped with a
family of color modalities noted 2m form ∈ N. A nice feature of the translation
we sketch is that it transports the intersection type system Zfix(G,A) which
depends on G and A into an intersection type system which does not depend
on them anymore — although it still depends on the set Q of states of the
automaton. In fact, the translation performs an on-the-fly Church encoding,
in the spirit of §9.1. The infinitary variant of linear logic which we consider for
defining such a translation is

• indexed in the sense of Bucciarelli and Ehrhard [BE00,BE01]. In partic-
ular, the finite or countable intersection types

∧
i∈I θi of Zfix(G,A) are

translated as finite or countable indexed families [θi | i ∈ I] of formulas
of the logic,

• tensorial in the sense of Melliès [MT10,Mel12,Mel14b]. In this specific
case, every negated formula of the logic is negated with respect to a
specific state q ∈ Q of the automaton, and is thus of the form σ ( q,
which may be alternatively written as ¬q σ or even as

q¬ σ.

In this way, one obtains an indexed and colored variant of tensorial logic,
called LT(Q) in the sequel, and whose formulas are inductively generated by
the following grammar:

A,B ::= 1 | A⊗B | ¬q A | �mA | [Aj | j ∈ J ] (m ∈ Col , q ∈ Q)

As already mentioned, following the philosophy in [BE01], the finite or count-
able indexed set [σj | j ∈ J ] internalizes the intersection operator of Zfix(G,A)
in our indexed tensorial logic, see [GM15b] for details in the finite case. Impor-
tantly, the resulting indexed logic TL(Q) can be used as an intersection type
system refining the simply-typed λ-calculus in just the same way as Zfix(G,A).
The main logical rules of the system are formulated below in Figure 9.3. In
order to simplify their presentation, we choose to write

¬q (A1, · · · , An)
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q ∈ Q
Axiom

x : q :: o ` x : q :: o

Γ, x : A :: κ ` M : B :: κ′
Left �

Γ, x : �ε A :: κ ` M : B :: κ′
Γ ` M : A :: κ Right �m�m Γ ` M : �m A :: κ

Γ, x : A :: κ ` M : B :: κ′
Dereliction

Γ, x : [A] :: κ ` M : B :: κ′
Γj ` M : Aj :: κ (∀j ∈ J)

Promotion∑
j∈J Γj ` M : [Aj | j ∈ J ] :: κ

Γ1 ` N1 : A1 :: κ1 · · · Γn ` Nn : An :: κn q ∈ Q
Left negation

(
∑n
i=1 Γi) , f : ¬q (A1, · · · , An) :: ¬ (κ1, . . . , κn) ` f N1 · · ·Nn : q :: o

Γ, x1 : A1 :: κ1, . . . , xn : An :: κn ` M : q :: o q ∈ Q
Right negation

Γ ` λx1 · · ·λxn.M : ¬q (A1, . . . , An) :: ¬ (κ1, . . . , κn)

Figure 9.3: Extension of tensorial logic with intersection types and color
modalities (main rules)

for the formula of indexed tensorial logic :

¬q (A1 ⊗ · · · ⊗ An) = A1 ( · · · ( An ( q.

Similarly, and for the sake of uniformity, we choose to write

¬ (κ1, · · · , κn)

for the type (or kind) of simply-typed λ-calculus:

κ1 → · · · → κn → o.

Note that, for the sake of simplicity, we prefer to keep implicit the index I, J
or K appearing on the side of each sequent of the logical rules below. The
reader interested in the precise treatment of such indexes will find the detailed
treatment in the work by Bucciarelli and Ehrhard [BE00,BE01] as well as in
our paper with Melliès [GM15b].

In particular, as we pointed out in §6.5, the fact that � defines a parametric
monoidal comonad in the logic means that the sequents

�ε A ` A
�max(m1,m2) A ` �m1

�m2
A

�m A ⊗ �m B ` �m (A ⊗ B)

are provable for all colors m,m1,m2 ∈ N, and all formulas A,B. In order to
deal with recursion schemes, we admit derivation trees with finite or countable
depth in the logical system TL(Q). The nodes of the derivation trees of TL(Q)
are then colored in the following way:
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• every node Γ `M : A :: κ in a Right introduction of the modality 2m :

Γ ` M : A :: κ Right �m�m Γ ` M : �mA :: κ

is assigned the color m of the modality,

• all the other nodes of the derivation tree are assigned the neutral color ε.

The winning condition on an infinite derivation tree of TL(Q) is then directly
adapted from the similar condition in Zfix(G,A). Thanks to this condition,
we are ready to state a useful correspondence theorem between Zfix(G,A)
and TL(Q) for any (productive) recursion scheme G. We believe that this
correspondence would be of help to prove Conjecture 1: as the relational model
is a model of tensorial logic, we believe that the infinitary, colored relational
model defined in the previous sections is a model of colored tensorial logic, so
that a correspondence between Zfix(G,A) and TL(Q) could be an important
step towards the relational reformulation of Theorem 19 that Conjecture 1 is.

We now explain the translation. Suppose that for each F ∈ N of kind κ(F )
of the recursion scheme G, we introduce a new free variable freeze(F ) of kind
κ(F )→ κ(F ) ; that we replace each λ-term R(F ) by its βη-long normal form ;
and finally, that we substitute each occurrence of F appearing in any βη-long
normal form R(G) of the recursion scheme G with the λ-term freeze(F ) F
of the same kind κ(F ). This transformation induces a context-free grammar
of « blocks» consisting of the βη-long R(G)’s, which generates an infinite λ-
term in βη-long normal form, noted term(G), with free variables of the form
freeze(F ). Moreover, this infinite λ-term term(G) is coinductively typed in
the simply-typed λ-calculus by the typing judgment:

. . . , freeze(F ) : κ(F )→ κ(F ) , . . . ` term(G) : o (9.44)

where F runs over all the non-terminals F ∈ N of the higher-order recursion
scheme G. Notice that the reason why we need to consider terms in β-normal
form is that TL(Q) does not contain a Cut rule, and we need η-long forms as
the Axiom rule is only defined for variables of ground type. At this point, we
are ready to recast our Theorem 19 in the proof-theoretic language of indexed
tensorial logic:

Proposition 30. There exists a winning derivation tree in Zfix(G,A) of the
sequent

S : �ε q0 :: o ` S : q0 :: o (9.45)

if and only if there exists a winning derivation tree in TL(Q) of a sequent

Γ ` term(G) : q0 :: o (9.46)

refining the typing judgment (9.44).

In order to prove Conjecture 1, it would remain to check that the colored,
infinitary relational semantics of linear logic we defined are precisely capture
by colored tensorial logic: one should check that

Γ ` term(G) : q0 :: o
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has a winning derivation tree in TL(Q) if and only if the interpretation of the
sequent Γ ` term(G) : q0 :: o in the infinitary, colored relational model
contains q0:

q0 ∈ [[Γ ` term(G) :: o]]    

We prove a similar connection for a finitary colored model of linear logic and
an associated intersection type system in §10.2.



Chapter 10

Finitary semantics and decidability
of higher-order model-checking

In this chapter, we explain how the connection between higher-order model-
checking and linear logic exhibited in the previous chapters leads to a new and
conceptually enlightening proof of the decidability of the local higher-order
model-checking problem, and of the selection problem originally established by
Carayol and Serre using collapsible pushdown automata.

The main idea is to start from the infinitary and colored relational seman-
tics of the λY -calculus we formulated in Chapter 9, and to replace it by its
finitary counterpart based on finite prime-algebraic lattices. As explained in
Chapter 5, this shift to the finitary Scott semantics is strongly suggested by a
theorem of Ehrhard proving that it is the extensional collapse of the relational
model [Ehr12b].

We therefore extend this finitary model with a coloring modality and a
parity fixpoint operator, both adapted from the analogous constructions of
Chapter 9. We prove that the denotations in this model can be computed type-
theoretically, and that the resulting type system can be related to Zstfix(G,A),
allowing us to prove a semantic version of the soundness-and-completeness
theorem of Chapter 6.

As a consequence, the interpretation [[G]]A of a higher-order recursion scheme
G with respect to an alternating parity automaton A in this finitary semantics
is precisely the set of states from which A accepts 〈 G 〉. The decidability of the
local model-checking problem then follows from the finiteness of the semantics,
which also allows us to solve the selection problem.

10.1 The colored Scott semantics of linear logic

As we have shown in the previous chapters, the treatment of colors by alter-
nating parity automata follows essentially the same comonadic principles as
the treatment of copies in linear logic. This connection between higher-order
model checking and linear logic leads to a coloring monoidal comonad 2 on
the relational semantics of linear logic, which we adapt here to the qualita-
tive Scott semantics introduced in §5.4. To that purpose, we fix a finite set of
colors Col containing a neutral element ε, and consider the coloring function
Q→ Col which associates a color to every state of a parity tree automaton A.

241
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The modality 2 is then defined in the following way for an ordered set (A,≤A)
and a morphism R : (A,≤A)→ (B,≤B):

� (A, ≤A ) = (A, ≤A ) & · · · & (A, ≤A )
∼= ({(c, a) | c ∈ Col , a ∈ A} , ≤�A )

(c1, a) �R (c2, b) iff c1 = c2 and aR b

where (c1, a) ≤�A (c2, a
′) iff c1 = c2 and a ≤A a′. The comonadic structure

of 2 is provided by the following structural morphisms

dig�A = {((max(c1, c2), a), (c1, (c2, a
′))) | a′ ≤A a} : �A→ ��A

der�A = {((ε, a), a′) | a′ ≤A a} : �A→ A
m�A,B = {(((c, a), (c, b)), ((c, (a′, b′)))) | a′ ≤A a, b′ ≤B b} : �A⊗�B → �(A⊗B)

m�1 = { (?, (c, ?)) | c ∈ Col } : 1→ � 1

As we did in the case of the relational semantics in §9.8, we define a distributive
law λ : ! ◦ � ⇒ � ◦ ! between the comonads ! and � defined as the natural
transformation:

λA =
{({(

cj , a
′
j

)}
, (c, {ai})

)
| ∀ i ∃ j c = cj and ai ≤A a′j

}
: !�A→ � !A

The existence of such a distributive law λ enables us to equip the composite
functor    = ! ◦� with a comonadic structure. Unless the comonad we consider
is clear from context, we denote dig!

A, der
!
A,. . . the structural morphisms of the

comonad !, and dig   A, der
   
A,. . . the ones of    .

Proposition 31. The colored exponential functor    satisfies the axioms of a
Seely category, and thus defines a model of full propositional linear logic.

We denote by ScottL   its Kleisli category. To ease the description of the
structural morphisms of the comonad    , we introduce the operation �c v which
maps a colored set v = {(ci, αi) | i ∈ I} ∈    A to the colored set

�c v = {(max(c, ci), αi) | i ∈ I} ∈    A

Lemma 19 (Structural morphisms of    ). The counit der   of    is given, on
an object A, by the downward-closed relation

{({(ci, ai) | i ∈ I} , a′) | ∃i ∈ I s.t. ci = ε and a′ ≤A ai} : !�A→ A

Its comultiplication dig   A on A is the downward-closed relation !�A →
!� !�A which relates every set

{(ci, ai) | i ∈ I} ∈ !�A

with every set

{(dj , {(ekj , bkj) | k ∈ Kj}) | j ∈ J} ∈ !� !�A

such that for every j ∈ J and k ∈ Kj there exists i ∈ I with

bkj ≤ ai and ci = max(dj , ekj)

In other terms,

dig   A = {(u, {(c1, v1), . . . , (cn, vn)}) | �c1 v1 ∪ · · · ∪�cnvn ≤   A u}
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Proof. The counit is obtained simply by composition of the counits of ! and �.
The comultiplication is obtained using the distributive law, as the composite:

   A = !�A
dig!
�A−−−−→ ! !�A

!!dig�A−−−−→ ! !��A
!λ�A−−−→ !� !�A =       A

10.2 A finitary interpretation of the simply-typed
λ-calculus

In order to simplify the discussion, we suppose given an alternating parity
tree A over a signature Σ, with set of states Q and with transition function
δ. As a Kleisli category associated to a model of linear logic, the category
ScottL   is cartesian closed and thus a model of the simply-typed λ-calculus.
The simple types are interpreted inductively as

[[σ → τ ]]    =    [[σ]]    ( [[τ ]]    and [[o]]    = ⊥⊥ = (Q, = )

The interpretation of the simply-typed λ-terms is standard, except for the
interpretation of the elements of the ranked alphabet Σ, seen here as constants
of the simply-typed λ-calculus. The idea is similar to the case of the relational
semantics, except that we want the relation interpreting a constant a ∈ Σ to
be downward-closed. In this goal, we introduce the following definition:

Definition 39. Given a state q ∈ Q and an n-ary constructor a ∈ Σ, we say
that an n-tuple α ∈ (Pfin(Col ×Q))

n validates the formula δ(q, a) when α is
of the form

α = ( { (c1i1 , q1i1) | i1 ∈ I1} , . . . , { (cnin , qnin) | in ∈ In} )

and there exists an n-tuple of subsets J1 ⊆ I1, . . . , Jn ⊆ In such that
n∧
k=1

∧
jk∈Jk

(k, qkjk) (10.1)

defines a conjunctive clause of the formula δ(q, a), and such that moreover

∀k ∈ {1, . . . , n} ∀j ∈ Jk ckj = Ω(qkj).

When J1 = I1, . . . , Jn = In, we say that α satisfies δ(q, a), as this corre-
sponds to a minor alteration of the notion of satisfaction of a boolean formula
and of a transition function already given for alternating parity automata on
p 47.

In other words, α is a n-tuple of sets {(c1ik , q1ik) | ik ∈ Ik} of states annotated
with colors, each of them corresponding to one of the n subtrees below the sym-
bol a. Moreover, each such set should contain a subset {(Ω(qkik), qkik) | ik ∈ Jk}
of appropriately colored states, such that (10.1) defines a conjunctive clause of
the formula δ(q, a). The general idea is that the n-tuple is allowed to contain
more colored states than what is strictly required for the transition δ(q, a) to
be performed by the alternating parity automaton A.
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The constants of the signature Σ are then interpreted as follows:

[[ a ]]A = { (α, q) | q ∈ Q and α validates the formula δ(q, a) }

As explained in §9.1 in the case of the quantitative relational semantics of
linear logic, this interpretation of the elements of Σ corresponds to a Church
encoding of the alternating parity automaton A, encoded in the present case
in the qualitative Scott semantics of linear logic.

Example 10. Consider the two transitions:

δ(q0, if) = (2, q0) ∧ (2, q1) δ(q1, if) = (1, q1) ∧ (2, q0)

Setting ci = Ω(qi), these transitions imply that

(u1, u2, q0) ∈ [[if ]]A and (v1, v2, q1) ∈ [[if ]]A

for all finite sets u1, u2, v1, v2 ∈    ⊥⊥ = Pfin (Col ×Q) satisfying moreover
that {(c0, q0), (c1, q1)} ⊆ u2, that (c1, q1) ∈ v1 and that (c0, q0) ∈ v2.

Using these interpretations in ScottL of the elements of the ranked alphabet
Σ, we construct the interpretation

[[Γ ` t :: τ ]]A ⊆ (   [[σ1]]    ⊗ · · · ⊗    [[σn]]    )( [[τ ]]    

of any λ-term t of type τ in a context of typed variables Γ, with constants
in the ranked alphabet Σ. An alternative way to describe this interpretation
is to express it as an intersection type system with subtyping, in the style of
Coppo, Dezani, Honsell and Longo [CDHL84] and more recently Terui [Ter12]
and Ehrhard [Ehr12a] in the framework of linear logic. Note that Terui and
Ehrhard present their type system with additively managed contexts, while the
incorporation of the coloring modality in our system requires a multiplicative
management, as it will be clear from the Application rule. In this type-theoretic
formulation, sequents are of the following form:

Γ = x1 : u1 :: σ1, . . . , xn : un :: σn ` t : α :: τ

where ui ∈    [[σi]]    and α ∈ [[τ ]]    . The typing rules are presented in Figure 10.2,
with the subtyping relation ≤A defined inductively in Figure 10.1. Note that
the coloring �c Γ of a context is defined inductively as

�c (x : u :: σ, Γ) = x : �c u :: σ, �c Γ
�c { (ci, αi) } = { (max(c, ci), αi) }

It is a syntactic reflection of semantic properties of the comonad � and of the
distributive law λ: the monoidality justifies the first equality, while the second
one proceeds from the distributive law, followed by the comultiplication of �.

Proposition 32. The sequent

Γ = x1 : u1 :: σ1, . . . , xn : un :: σn ` t : α :: τ

is provable in this intersection type system if and only if

(u1, . . . , un, α) ∈ [[Γ ` t :: τ ]]A ⊆ (   [[σ1]]    ⊗ · · · ⊗    [[σn]]    )( [[τ ]]    



10.2. A FINITARY INTERPRETATION OF THE SIMPLY-TYPED
λ-CALCULUS 245

q ≤⊥⊥ q
∀ (c, α) ∈ u ∃ (c, β) ∈ v α ≤A β

u ≤   A v

v ≤   A u α ≤B β

u→ α ≤   A(B v → β

Figure 10.1: Inference rules for the preorders associated with simple types.

∃ (ε, α′) ∈ u α ≤[[σ]]   α′

Ax
x : u :: σ ` x : α :: σ

Γ, x : u :: σ ` M : α :: τ
λ

Γ ` λx.M : u→ α :: σ → τ

Γ0 ` M : {(c1, β1), . . . , (cn, βn)} → α :: σ → τ Γi ` N : βi :: σ (∀i)
App

Γ0 ∪�c1 Γ1 ∪ · · · ∪�cn Γn ` M N : α :: τ

Γ ` t : α :: τ u ∈    [[σ]]    
Weak

Γ, x : u :: σ ` t : α :: τ

q ∈ Q and α validates δ(q, a)
δ

∅ ` a : α→ q :: oar(a) → o

Figure 10.2: The type system S(A) computing denotations in ScottL   

For a closed term t of simple type σ, we set [[t]]A = [[∅ ` t :: σ]]A. A
consequence of Proposition 32 is that the typing derivations describe the com-
putations of the elements of the denotation of a term. Another important con-
sequence of this proposition is the following corollary, which is a type-theoretic
counterpart to the fact that ScottL   is a cartesian closed category and there-
fore allows an interpretation of terms which is invariant under the rules β and
η:

Corollary 4. Suppose that Γ ` t : α :: σ in S(A). Then, given a term t′,

• if t→β t
′, then Γ ` t′ : α :: σ,

• if t′ →β t, then Γ ` t′ : α :: σ,

• if t→η t
′, then Γ ` t′ : α :: σ,

• if t′ →η t, then Γ ` t′ : α :: σ.

Note that, as remarked for instance in [Sal10], the stability under η-reduction
does not hold in a qualitative intersection type system (that is, idempotent)
in the absence of subtyping. This property of subtyping is therefore crucial
to obtain a model in which the interpretation of a term is invariant not only
under the rule β, but also under η.

The remaining of this section is devoted to the proof of the correspondence
between the denotations in ScottL   and the typing derivations in S(A).

Proof of Proposition 32. We prove the proposition by induction on the
derivation tree justifying

Γ = x1 : u1 :: σ1, . . . , xn : un :: σn ` t : α :: τ
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by applying the following sequence of lemmas (Lemmas 20-24) exhibiting the
structure of the interpretation of terms in ScottL   . Note that all these in-
terpretations are morphisms of the model, and are therefore downward-closed
relations.

The first lemma justifies the Axiom rule:

Lemma 20. The interpretation of x :: σ ` x :: σ is

[[x :: σ ` x :: σ]]A =
{

(u, α) | u ∈    [[σ]]    and ∃(ε, α′) ∈ u α ≤[[σ]]   α
′}

Proof. This interpretation is given, in the cartesian closed category ScottL   ,
by the counit of the comonad    , considered in ScottL. It is itself obtained as
the composite the counit of ! with the one of 2, which is on the object [[σ]]    

der[[σ]]   =
{

((ε, α′′), α) | α ≤[[σ]]   α
′′} : � [[σ]]    → [[σ]]    

The counit of ! on the object � [[σ]]    relates the set u ∈    [[σ]]    of pairs of colors
with elements of [[σ]]    to the elements (c, α′′) such that there exists (c, α′) ∈ u
with α′′ ≤[[σ]]   α′. The conclusion follows from the composition of these two
relations, which notably composes only elements such that c = ε.

The second lemma justifies the rule δ for the typing of constants:

Lemma 21. The interpretation of ∅ ` a :: on → o is

[[∅ ` a :: on → o]]A = [[ a ]]A
= { (α, q) | q ∈ Q and α validates the formula δ(q, a) }
= {(v1, . . . , vn, q) | ∃u1 · · ·un ∀i ui ≤   ⊥⊥ vi

and
⋃
i {i} × ui satisfies δ(q, a)}

Proof. The proof is immediate from the interpretation we gave of constants;
we just point out that this interpretation is indeed downward-closed, as the
notion of validation of a formula we introduced is precisely the closure under
subtyping of the notion of satisfaction introduced earlier for positive boolean
formulas and therefore for alternating tree automata.

The next lemma justifies the Weakening rule:

Lemma 22. Given a simple type σ and a morphism f ∈ (   [[σ1]]    ⊗ · · · ⊗    [[σn]]    )→
[[τ ]]    , the interpretation of the weakening of f by σ is the morphism of ScottL

Weakσ(f) ∈ (   [[σ]]    ⊗    [[σ1]]    ⊗ · · · ⊗    [[σn]]    )→ [[τ ]]    

whose elements are the tuples (u, u1, . . . , un, α) such that (u1, . . . , un, α) ∈ f
and u ∈    [[σ]]    .

Proof. We consider the general case where f :    C ( A, and set B = [[σ]]    .
We say that this case is general as, for C = [[σ1]]    & · · · & [[σn]]    , the Seely
isomorphisms give

C ∼=    [[σ1]]    ⊗ · · · ⊗    [[σn]]    

This allows us to treat the general case by conveniently considering only one ob-
ject in the domain of f . Following the usual interpretation of the λ-calculus in
a cartesian closed category, the morphism Weakσ(f) is then obtained, modulo
Seely isomorphism, as the composite in ScottL



10.2. A FINITARY INTERPRETATION OF THE SIMPLY-TYPED
λ-CALCULUS 247

   B ⊗    C
dig   B⊗dig

   
C−−−−−−−→       B ⊗       C

   >   B⊗der      C−−−−−−−−−→    >⊗    C ∼= 1⊗    C ∼=    C f−→ A

where the morphism >   B is the unique morphism from    B to the terminal
object > = (∅, ∅). It is therefore the empty relation, whose promotion    >   B
is the relation from       B to    > = 1 = ({?},=) such that

   >   B = { (u, {?}) | u ∈       B }

Moreover, since    is a comonad, we have the equality der      C ◦ dig
   
C = id   C ,

so that Weakσ(f) rewrites as

   B ⊗    C
dig   B⊗id   C−−−−−−−→       B ⊗    C

   >B⊗id   C−−−−−−−→    >⊗    C ∼=    C f−→ A

This composite relates every pair (u, v) ∈    B ⊗    C with a, for (v, a) ∈ f and
u ∈    B. This proves the lemma.

The next lemma justifies the rule λ:

Lemma 23. Given a morphism f ∈ (   [[σ1]]    ⊗ · · · ⊗    [[σn]]    ⊗    [[σ]]    )→ [[τ ]]    
in ScottL, the interpretation of the abstraction of σ in f is the morphism

Λσ(f) ∈ (   [[σ1]]    ⊗ · · · ⊗    [[σn]]    )→ (   [[σ]]    ( [[τ ]]    )

whose elements are the tuples (u1, . . . , un, (u, α)) such that (u1, . . . , un, u, α) ∈
f .

Proof. As in the previous lemma, we consider a morphism f :    C⊗   B → A,
with C = [[σ1]]    & · · ·&[[σn]]    , B = [[σ]]    and A = [[τ ]]    . Its interpretation is
given directly by the cartesian closure of ScottL   : it is:

C
ΛC,B,A(f)−−−−−−−→ (B ⇒ A) ∼=    B( A

and the definition of ΛC,B,A(f) induces the result of the lemma.

The last lemma justifies semantically the Application rule.

Lemma 24. Let f :    C → (   A( B) and g :    C → A be two morphisms.
The morphism

App(f, g) :    C → B

is defined as the set of couples

(v0 ∪ �c1 v1 ∪ · · · ∪ �cn vn, β) ∈    C ×B

such that there exists

(v0, ({(c1, α1) , . . . , (cn, αn)} , β)) ∈ f

and that, for i ∈ {1, . . . , n},

(vi, αi) ∈ g.
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Proof. In a cartesian closed category obtained from a model of linear logic, the
morphism App(f, g) is traditionally obtained – modulo Seely isomorphism – as
the composite

   C
App(f,g) //

diag   C

��

B

   C&   C

digC&digC

��

   A & (   A( B)

ev

OO

      C &      C
   g&   f

//    A &    (   A( B)

id   A&der   A(B

OO

where the depicted morphisms are in the model of linear logic we consider
– here, ScottL – and not in the Kleisli category itself. In this diagram, the
morphism diag is the diagonal morphism associated with the cartesian product
&, and the evaluation ev is just the relational composition. Let us first simplify
this diagram by proving that

der   A(B ◦    f ◦ digC = f

Consider (v, (u, β)) ∈ f . We have:

• (v, {(ε, v)}) ∈ digC ,

• ({(ε, v)}, {(ε, (u, β))} ∈    f ,

• and ({(ε, (u, β))}, (u, β)) ∈ der   A(B

so that (v, (u, β)) ∈ der   A(B ◦    f ◦ digC .

Conversely, consider (v, (u, β)) ∈ der   A(B ◦    f ◦ digC . This element
is necessarily obtained from the composition of elements of the form:

• (v, {(ε, v′0), (c1, v
′
1), . . . , (cn, v

′
n)}) ∈ digC ,

• ({(ε, v′0), (c1, v
′
1), . . . , (cn, v

′
n)}, {(ε, (u′, β′))} ∈    f ,

• and ({(ε, (u′, β′))}, (u, β)) ∈ der   A(B .

where

• �εv′0 ∪�c1v′1 ∪ · · · ∪�cnv′n ≤   C v, which implies v′0 ≤   C v, by definition
of dig,

• (v′0, (u
′, β′)) ∈ f , by definition of    f ,

• and u′ ≤   A u and β ≤B β′, by definition of der.

Since f is downward-closed, it contains (v, (u, β)). This concludes the proof of
equality.
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We can therefore simplify the definition of App(f, g) as

   C
App(f,g) //

diag   C

��

B

   C&   C

digC&idC ''

   A & (   A( B)

ev

OO

      C &   C
   g&f

66

From this diagram follows that the elements (v, β) ∈ App(f, g) are the ones
such that

• ∃v0, . . . , vn such that v0 ∪ �c1 v1 ∪ · · · ∪ �cn vn ≤ v,

• for every i ∈ {1, . . . , n}, (vi, αi) ∈ g,

• ({(c1, α1), . . . , (cn, αn))} , β) ∈ f .

We can moreover assume that v0 ∪ �c1 v1 ∪ · · · ∪ �cn vn = v, since g is
downward-closed. This concludes the lemma.

To relate this last lemma with the Application rule, we use a single object
C to describe a context, as in the proofs of previous lemmas, taking to our
advantage the Seely isomorphism. Moreover, the morphism g we use here
implicitly uses a same context domain for every sequent

Γi ` N : βi :: σ

We claim that this is not a restriction, as we can use weakening to introduce
an empty refined type to variables missing in one of these contexts to ensure
uniformity.

From these lemmas follows Proposition 32.

10.3 A first connection with higher-order
model-checking

The purpose of this chapter is to connect ScottL   with higher-order model-
checking, in order to obtain in this model of the λ-calculus a finitary counter-
part to Conjecture 1. In a first time, we aim at relating the type system S(A)
describing the computation of denotations in this model with the intersection
type system Zst(A) introduced earlier for model-checking. The major hurdle
to this connection is the lack of subtyping in Zst(A). However, it turns out
that the subtyping appearing in S(A) can be eliminated on η-long forms of
λ-terms, as we prove now adapting [Sal10] to S(A). In [Sal10], Salvati con-
siders an intersection type system which is equivalent to the intersection type
systems introduced by Ehrhard [Ehr12a] and Terui [Ter12] for the computation
of denotations in ScottL!. The main differences with our framework are that
we consider a type system enriched with a coloring modality, and where con-
texts are managed multiplicatively, while their system is additive and does not
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feature modalities. This multiplicative management of contexts is necessary to
design the Application rule, as the modality acts differently on each argument.
This makes the proof a little more complicated than in [Sal10], even though
the core idea is the same.

η-long forms. First, let us recall the notion of η-long form of a simply-
typed term, introduced in [Hue76] where the properties we are to formulate are
proved. A term t is in η-long form when, for every decomposition t = C[u],
we have

• either u = λx. u′,

• or C = C ′[[ ] u′].

The set of terms in long form is closed under β-reduction. For every term t,
there are terms t′ in long form such that t′ →η t (where →η is the η-reduction
defined on p.57), which can be obtained by η-expansion. Moreover, when t is
in long form and that t′ →η t, we also have that t′ →β t – recall that this
implication does not hold in general. This notably implies that every term has
a “minimal” long form, obtained by iterating β reduction over one of its long
forms. The result is its β-normal η-long form, and is unique. The set of such
forms over a set of variables V and a signature Σ is described by the grammar

t ::= x t1 · · · tn | a t1 · · · tn | λx. t

where x ∈ V, a ∈ Σ, and n is required to be the arity of the simple type of x
or a, and may thus be 0.

η-long forms and subtyping. We say a derivation is without subtyping
when its Axiom leaves are all of the form

(ε, α) ∈ u
Ax

x : u :: σ ` x : α :: σ
and all its δ leaves are of the form

q ∈ Q and α satisfies δ(q, a)
δ

∅ ` a : α→ q :: oar(a) → o

where we replaced the fact that α should validate δ(q, a) by the fact that it
should satisfy it – in other words, we do not allow α to contain more informa-
tion than strictly needed for the transition δ(q, a). Notice that for both these
rules, these restrictions amount not to use subtyping to introduce the variables
and constants.

Lemma 25. Suppose that Γ ` t : α :: σ is derivable in S(A) without
subtyping, and that α′ ≤[[σ]]   α. There there exists a “η-longer” term t′ such
that t′ →∗η t and that Γ ` t′ : α′ :: σ is derivable in S(A) without subtyping.

Proof. We prove the lemma by induction on the simple type σ. If σ = o is the
ground type, then there is a state q of the automaton such that q = α = α′,
and it suffices to take t′ = t. Suppose now that

σ = σ1 → · · · → σn → o



10.3. A FIRST CONNECTION WITH HIGHER-ORDER
MODEL-CHECKING 251

This implies that α and α′ decompose as

α = S1 → · · · → Sn → q

and
α′ = S′1 → · · · → S′n → q′

Since α′ ≤[[σ]]   α, we have that q = q′, and that for every i ∈ {1, . . . , n} and
every (c, β) ∈ Si there exists (c, β′) in S′i such that β ≤[[σi]]   β

′.
We introduce n fresh variables y1, . . . , yn. By the Axiom rule, we obtain

that yi : (ε, β′) :: σi ` yi : β′ :: σi is provable, and the induction hypothesis
implies that there exists a term tβi such that tβi →∗η yi and that yi : (ε, β′) ::

σi ` tβi : β :: σi is provable. Considering the set of elements (c, β) ∈ Si, we
obtain in this way a family of terms (tβi )β which can all be β-reduced to yi.
But η-expansion is confluent, so that there exists a term ti such that, for every
β, ti →∗η t

β
i . Moreover, η-expansion preserves typing in S(A) by Corollary 4:

for every (c, β) ∈ Si, there exists (c, β′) in S′i such that β ≤[[σi]]   β
′, and that

yi : (ε, β′) :: σi ` ti : β :: σi is provable in S(A) (10.2)

So, for every i ∈ {1, . . . , n} and every (c, β) ∈ Si, we have a proof of this
sequent. We consider now a proof of Γ ` t : α :: σ and, using weakening, we
obtain one of

Γ, y1 : S′1 :: σ1, . . . , yn : S′n :: σn ` t : S1 → · · · → Sn → q :: σ

Using the Application rule n times, we obtain a proof of

Γ, y1 : S′1 :: σ1, . . . , yn : S′n :: σn ` t t1 · · · tn : q :: σ (10.3)

from all the proofs we previously considered. Let us explain why the context
does only contain the set S′i for each variable yi: the proof of this sequent is
obtained by providing, for every i and (c, β) ∈ Si, a proof of the sequent (10.2)
in which the context contains only the type (ε, β′) for yi. In the Application
building the proof of (10.3), this context is affected by the coloring �c which
updates it to (c, β′), which belongs to S′i. The result is now obtained by
applying the abstraction rule n times to (10.3), and by remarking that

λx1. . . . λxn. t t1 · · · tn →∗η λx1. . . . λxn. t y1 t2 · · · tn
→∗η λx1. . . . λxn. t y1 · · · yn
→∗η t

Corollary 5. Suppose that Γ ` t : α :: σ is derivable in S(A) without
subtyping, and that α′ ≤[[σ]]   α. If t is in η-long form, then Γ ` t : α′ :: σ is
derivable in S(A) without subtyping.

Proof. By Lemma 25, there exists t′ such that t′ →∗η t and that Γ ` t′ : α′ :: σ
is derivable in S(A) without subtyping. But the fact that t is η-long implies
that t′ →∗β t, and Corollary 4 allows to conclude that Γ ` t : α′ :: σ is
derivable in S(A). The fact that it does not require subtyping can be deduced
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from the subject reduction procedure, which only manipulates subproofs and
does modify them1.

A consequence of this corollary and of the stability of typability in S(A)
expressed in Corollary 4 is the following theorem explaining that subtyping can
be eliminated on η-long forms:

Theorem 28. Let t be a term and tβη its β-normal η-long form. Then Γ `
t : α :: σ is derivable in S(A) if and only if Γ ` tβη : α :: σ is derivable
without subtyping in S(A).

Proof. Suppose that Γ ` t : α :: σ is derivable in S(A), and consider a proof
π of this sequent. For every Axiom leaf using subtyping, that is, of the form

∃ (ε, α′) ∈ u α ≤[[σ]]   α′

Ax
x : u :: σ ` x : α :: σ

where α ≤[[σ]]   α′ and α 6= α′, we have that x : u :: σ ` x : α′ :: σ is
provable without subtyping, and this implies that the β-normal η-long form tx
of x is such that x : u :: σ ` tx : α′ :: σ is provable without subtyping.
By Corollary 5, x : u :: σ ` tx : α :: σ is provable without subtyping. We
replace the Axiom leaf we considered in π by this proof without subtyping for
tx. We proceed similarly for the δ leaves using subtyping, and obtain a proof
π′ without subtyping of a sequent Γ ` t′ : α :: σ, such that tβη →∗η t′. By
η-expansion, we obtain that Γ ` tβη : α :: σ is derivable without subtyping
in S(A).

Suppose now that Γ ` tβη : α :: σ is derivable without subtyping in S(A).
Then, in particular, Γ ` tβη : α :: σ is derivable in S(A) – nothing being
said about subtyping anymore. By Corollary 4, since tβη →∗η t, Γ ` t : α :: σ
is derivable in S(A).

This is an adaptation to the colored, multiplicative type system S(A) of the
Theorem 4 of [Sal10]. Intuitively, this theorem expresses the fact that, on
ground type, weakening is enough to simulate subtyping: an Axiom rule intro-
ducing a variable of ground type is of the shape

(ε, q) ∈ u
Ax

x : u :: o ` x : q :: o

and is therefore without subtyping. It embeds weakening, as we allow to intro-
duce in the context a set of types u for x which is greater than {(ε, q)}. When a
term is in η-long form, all its Axiom leaves introduce variables of ground type,
so that they are without subtyping.

Relating type systems. The type system S(A) describes the computation
of denotations in ScottL   , so that the typing of a variable in a context

x : { (ci, αi) | i ∈ I } :: σ (10.4)

1Only η-reduction actually requires subtyping to preserve typability, see [Sal10] for in-
stance.
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describes a set of elements belonging to the interpretation    [[σ]]    of the sim-
ple type σ of the variable x. As already pointed out by Ehrhard [Ehr12a]
and Terui [Ter12] in the type system they give for describing denotations in
the uncolored model ScottL!, this notation corresponds to an idempotent in-
tersection type. In our situation, the typing (10.4) may be written as the
idempotent intersection type

x :
∧
i∈I

�ci θi :: σ

We denote by (| · |) the translation of sets into intersection types, and by |) · (|
its converse. Once this identification performed, only three differences remain
between the type systems S(A) and Zst(A):

1. in Zst(A), there is no subtyping,

2. in S(A), the Axiom rule allows to introduce a set of elements u to type
the variable x in the context, while in Zst(A) only one type may be
introduced,

3. and the weakening rules are not exactly the same in both systems.

We shall now explain why Zst(A) and the subtyping-free fragment of S(A)
are equivalent on η-long forms:

Theorem 29. Let t be a term such that

Γ ` t : θ :: κ

is provable in Zst(A). Then

|) Γ (| ` t : |) θ (| :: κ

is provable without subtyping in S(A).
Let t be a term such that

Γ ` t : α :: σ

is provable in S(A). By Theorem 28, its β-normal η-long form can be given the
same type in the same context, without using subtyping, and this proof without
subtyping can be translated into a proof of

(|Γ |) ` tβη : (|α |) :: σ

in Zst(A).

We identify sets and intersection types to ease the statement of this corollary:

Corollary 6. Let t be a term in β-normal η-long form. Then

Γ ` t : α :: σ

is provable in Zst(A) if and only if it is provable in S(A).

Let us prove this theorem just by explaining how to deal with the three differ-
ences we pointed out between the subtyping-free fragment of S(A) and Zst(A).
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1. The lack of subtyping is only an obstruction to translate proofs of S(A)
into Zst(A). We bypass this problem by considering the β-normal η-
long form of the term, which is always provable without subtyping by
Theorem 28. Note that we may have used any term obtained by “enough”
η-expansions of t to eliminate subtyping. However, as we will not need
this accuracy in the sequel, we choose to stick to the most canonical
η-long form of t, that is tβη.

2. In Zst(A), only one type may be introduced by the Axiom rule, but we can
use immediately after the rule Weakc to add more types to the context
and simulate the Axiom rule of S(A).

3. The weakening rule of S(A) can be translated using aWeak rule followed
by a Weakc rule. The translation of the weakenings from Zst(A) to
S(A) is more subtle, and involves some prior proof rewriting which we
only sketch here. We use commutations of rules as in §6.6, but this
time to make the rules Weak and Weakc move upper in the proof. On
an Application typing t u, several choices arise. We always choose to
commute the Weak or Weakc rule with the Application one so that
it goes to the (unique) derivation for t occurring as a premise of the
Application rule. There are two reasons for this choice: it is not affected
by the coloring modality, and this derivation always exists and is unique,
while there may be no or multiple derivations for u. We iterate these
commutations as much as possible. When two Weakc rules for the same
variable are in a row, we contract them to only one. Once this process
done, two situations arise given a Weakc rule:

• if there is an Axiom leaf introducing the variable the Weakc rule
weakens above it, the translation combines the effect of both rules
by using an Axiom rule in S(A) which introduces directly in the
context the one built by the Weakc rule,

• and if there is no such Axiom leaf, then the variable is introduced
by a Weak rule. We can use commutations to make this Weak rule
and the Weakc rule we consider occur in a row, and replace them
both by a Weakening in S(A) having the same effect.

These elements sketch how we can mutually translate subtyping-free proofs
of S(A) into proofs of Zst(A), and conversely.

Colored Scott semantics and higher-order model-checking. A corol-
lary of Proposition 32 and of Theorem 29 is the following theorem:

Theorem 30. Let t be a term of simple type τ whose free variables define a
context

Γ = x1 :: σ1, . . . , xn :: σn

and let tβη be its β-normal η-long form. Then

[[Γ ` t :: τ ]]A ∼=
{
|) θ (| | (|Γ |) ` tβη : θ :: τ in Zst(A)

}
Now that we incorporated the coloring modality into the Scott model of

linear logic, and connected ScottL   with the type system Zst(A) we use for
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higher-order model-checking in §6.6, it remains to deal with recursion. The idea
is to extend the model ScottL   of the λ-calculus with a fixpoint operator, and
to obtain in this way a model of the λY -calculus in which we will be able to
interpret higher-order recursion schemes thanks to their equivalence with λY -
terms (Proposition 5). We proceed similarly as we did for the relational model
in Chapter 9.

The fixpoint operator will act as the fix rule does in Zstfix(G,A): by compos-
ing denotations of terms in ScottL   , and checking that the infinite branches
of the composition tree satisfy the parity condition.

10.4 The recursion operator Y

At this stage, we are ready to shift from the colored semantics of the simply-
typed λ-calculus formulated in §10.2 to a colored semantics of the simply-
typed λY -calculus. To that purpose, we construct a Conway operator Y in
the category FinScottL defined as the full subcategory of ScottL consisting
of the finite ordered sets. Note that FinScottL defines a Seely category,
and thus a model of full propositional linear logic. We will see in §10.6 and
in §10.7 that the finitary nature of the model will enable us to establish the
decidability of the local higher-order model-checking problem (Corollary 8) and
of the selection problem (Theorem 33). On the other hand, shifting from
ScottL to FinScottL means that we cannot interpret any more infinitary
types like the type of natural numbers. The Conway operator Y is defined a
family of operations YX,A transporting a binary downward-closed relation

R :    X ⊗    A( A

into a binary downward-closed relation

YX,A(R) :    X ( A

and satisfying a series of conditions given in §9.4. Again, such a Conway op-
erator on FinScottL defines a Conway operator in the sense of [BÉ96] in the
cartesian-closed category FinScottL   . Just as in the case of the relational se-
mantics, the important point here is that the colors added to the original Scott
semantics will enable us to alternate least and greatest fixpoints (and thus in-
ductive and coinductive reasoning) in the definition of the fixpoint operator Y,
using the appropriate parity condition.

Semantic run-trees. Given a relation R :    X ⊗    A ( A and a ∈ A, we
define the set run-tree(R, a) of semantic run-trees of R producing a ∈ A as the
set of possibly infinite (X ]A)-labeled trees, with nodes colored by elements
of Col , and such that the four conditions below are satisfied:

1. the root of the tree is labeled by a, and has neutral color ε,

2. the inner nodes of the tree are labeled by elements of the set A,

3. the leaves are labeled by elements of the set X ]A,

4. for every node labeled by an element b ∈ A:
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• if b is an inner node, letting a1, . . . , an denote the labels of its chil-
dren belonging to A and x1, . . . , xm the labels belonging to X:

b

an. . .a1xm. . .x1

and letting ci (resp. dj) be the color of the node labeled xi (resp.
aj),

({(c1, x1), · · · , (cm, xm)} , { (d1, a1), · · · , (dn, an)} , b) ∈ R

• if b is a leaf, then (∅, ∅, b) ∈ R.

At this point, we adapt to semantic run-trees the usual acceptance condition
on the run-trees of an alternating parity automata: an infinite branch of the
semantic run-tree is winning if and only if an element of Col \ {ε} occurs in-
finitely often along it, and if the maximal such element is even. A semantic
run-tree is declared winning if and only if all its infinite branches are.

Given a semantic run-tree witness, we define the set leaves(witness) ⊆    X as
the set of elements (c, x) where (c′, x) is a leaf of witness labeled with x ∈ X,
and c is the maximal color encountered on the path from the leaf to the root
of witness.

Fixpoint operator. We now define the fixpoint of a binary relation

R :    X ⊗    A( A

as the downward-closed binary relation

YX,A (R) = { (u, a) | ∃witness ∈ run-tree(R, a) with u = leaves(witness)
and witness is a winning semantic run-tree. } (10.5)

Proposition 33. The fixpoint operator Y is a Conway operator over FinScottL.
The Kleisli category FinScottL   of    is therefore a model of the λY -calculus.

As in §10.2, we find useful and even illuminating to formulate a type-theoretic
counterpart to our definition of the Conway operator YX,A provided by the fol-
lowing typing rule Yσ which should be added to the type system of Figure 10.2:

Γ0 ` M : {(c1, β1), . . . , (cn, βn)} → α :: σ → σ Γi ` YσM : βi :: σ
Yσ Γ0 ∪�c1 Γ1 ∪ · · · ∪�cn Γn ` Yσ M : α :: σ

In the resulting intersection type system, derivations of infinite depth are al-
lowed, and have colored nodes, defined as follows:

• for every occurrence of the rule Yσ, we assign color ci to the node Γi `
YσM : βi :: σ.



10.5. INTERPRETATION OF HIGHER-ORDER RECURSION
SCHEMES 257

• all the other nodes are assigned the neutral color ε.

An infinite derivation tree is then accepted when all its branches are winning
for the parity condition, just as for the branches of a semantic run-tree. It is
easy to see that the typing rule Yσ is the semantic counterpart of the fixpoint
operator Y:

Theorem 31. Given a λY -term t, the sequent

Γ = x1 : u1 :: σ1, . . . , xn : un :: σn ` t : α :: τ

has a winning derivation tree in the type system with fixpoints iff

(u1, . . . , un, α) ∈ [[Γ ` t :: τ ]]A ⊆ (   [[σ1]]    ⊗ · · · ⊗    [[σn]]    )( [[τ ]]    

10.5 Interpretation of higher-order recursion schemes

Once this fixpoint operator defined in the model, and in order to investigate
the decidability of the higher-order model-checking problem using the Scott
semantics, it remains to explain how recursion schemes can be interpreted in
the model. Our aim is to find a rule analogous to Yσ, but for non-terminals, and
which could then be related to the rule fix of Zstfix(G,A). This would connect
our reformulation of the result of Kobayashi and Ong with our colored Scott
semantics of linear logic, and allow us to solve the higher-order model-checking
problem.

Recall that Proposition 5 states that HORS can be translated into closed
λY -terms over the same signature, and conversely. The translation, described
in [SW12], maps a recursion scheme over the set of non-terminals {F1 = S, . . . , Fn}
to the term T1 obtained as follows:

Tn = Y (λFn.R(Fn) )
Tn−1 = Y (λFn−1.R(Fn−1)[Fn ← Tn] )

...
T1 = Y (λF1.R(F1)[F2 ← T2, . . . , Fn ← Tn] )

Adapting the rule Yσ to this encoding seems particularly tedious, as it
features several nested fixpoint calls. Another solution is to consider instead
the usual semantic interpretation of the solution of a system of equations in a
cartesian closed category with a fixpoint operator, and to set directly

[[G]]A = [[π1 (Y (λF. 〈 t1, . . . , tn 〉 ) )]]A
= π1 (Y ( Λ 〈 [[t1]]A, . . . , [[tn]]A 〉 ) )

where we consider an extension of λ-terms (and thus of simple types) with
cartesian products and projections, and where each term ti is equal to the
term obtained fromR(Fi) by replacing every non-terminal Fj by the projection
πj F . The use of the morphism Λ is a semantic counterpart to the syntactic
abstraction λF . Semantically, this object is well-defined, as the morphism

Λ 〈 [[t1]]A, . . . , [[tn]]A 〉
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is an element of

   

(
n̄

i=1

[[κ(Fi)]]    

)
(

n̄

i=1

[[κ(Fi)]]    

and we can apply the fixpoint operator to the objects A =
˘n
i=1 [[κ(Fi)]]    and

X = >. Note that the set X of parameters is empty, as the terms ti only
contain F as a free variable, which is captured by the abstraction λF . If we
did not treat the elements of Σ as constants, but as free variables as in the
previous chapter, there would be parameters to take care of.

Since A is an object of ScottL, the fixpoint operator is defined, even if A
is obtained as a cartesian product: the elements of

Y ( Λ 〈 [[t1]]A, . . . , [[tn]]A 〉 )

are simply the couples (d, α) consisting of an integer d ∈ {1, . . . , n} and of an
element β ∈ [[κ(Fd)]]    , such that there exists a semantic run-tree, winning for
the parity condition, of the shape

(d, α)

(dk, βk)

...
...

· · ·(d1, β1)

...
...

where the node (di, βi) has color ci, and

({ (ci, (di, βi)) | i ∈ {1, . . . , k} } , (d, α)) ∈ [[λF. 〈 t1, . . . , tn 〉]]A

Similar conditions show that every (di, βi) can be produced by the relation
[[λF. 〈 t1, . . . , tn 〉]]A, and so on.

To extend the rule Yσ to this more general framework in which we use
cartesian products, a natural temptation would be to extend the type system
S(A) we defined for the λ-calculus with a cartesian product and projections, in
order to reflect the cartesian structure of the semantics directly in the refined
types of the system, and then to accommodate the fixpoint rule to this extended
setting. We find easier, however, to simply introduce a family of operators

µi(x1, . . . , xn). 〈 t1, . . . , tn 〉

for terms t1, . . . , tn whose free variables are included in {x1, . . . , xn} and which
would be defined, in this extension of the calculus with products, as

µi(x1, . . . , xn). 〈 t1, . . . , tn 〉 = πi (Y (λF. 〈 t1[x1 ← π1 F, . . . , xn ← πn F ], . . . , tn[x1 ← π1 F, . . . , xn ← πn F ] 〉 ) )

In the sequel, we often write [xj ← πj F ] to denote the substitution [x1 ←
π1 F, . . . , xn ← πn F ]. These operators unfold using the rule

µi(x1, . . . , xn). 〈 t1, . . . , tn 〉 → ti[xj ← µj(x1, . . . , xn). 〈 t1, . . . , tn 〉] (10.6)

in which, again, the substitution is performed for every j ∈ {1, . . . , n}. This
rule is supported by the fact that, in the extension of the calculus with cartesian
products, we would have
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µi(x1, . . . , xn). 〈 t1, . . . , tn 〉

= πi (Y (λF. 〈 t1[xj ← πj F ], . . . , tn[xj ← πj F ] 〉 ) )

→ πi ( 〈 (t1[xj ← πj F ]) [F ← Y (λF. 〈 t1[xj ← πj F ], . . . , tn[xj ← πj F ] 〉 )]
...

(tn[xj ← πj F ]) [F ← Y (λF. 〈 t1[xj ← πj F ], . . . , tn[xj ← πj F ] 〉 )] 〉 )

= (ti[xj ← πj F ]) [F ← Y (λF. 〈 t1[xj ← πj F ], . . . , tn[xj ← πj F ] 〉 )]

= ti[xj ← πj Y (λF. 〈 t1[xj ← πj F ], . . . , tn[xj ← πj F ] 〉 )]

= ti[xj ← µj(x1, . . . , xn). 〈 t1, . . . , tn 〉]

The precise description of the extension of the calculus with a cartesian
product is unnecessarily complex, so that we just consider its extension with
the family of operators (µi), regulated by the family of unfolding rules (10.6).
To type terms extended with these constructors, we introduce the family of
fixpoint rules2

∅ ` µk(x1, . . . , xn). 〈 t1, . . . , tn 〉 : βjk :: σk for every 1 ≤ k ≤ n and jk ∈ Jk
x1 : {(cj1 , βj1) | j1 ∈ J1} :: σ1, . . . , xn : {(cjn , βjn) :: σn | jn ∈ Jn} ` ti : α :: σi

Yµ ∅ ` µi(x1, . . . , xn). 〈 t1, . . . , tn 〉 : α :: σi

where, for every 1 ≤ j ≤ n, σj is the simple type of tj . We call Sfix(A) the
resulting extension of the type system S(A). In this intersection type system,
derivations of infinite depth are allowed, and have colored nodes, defined as
follows:

• for every occurrence of the rule Yµ, we assign color cjk to the node

∅ ` µk(x1, . . . , xn). 〈 t1, . . . , tn 〉 : βjk :: σk

• all the other nodes are assigned the neutral color ε.

An infinite derivation tree is then accepted when all its branches are winning
for the parity condition, just as we did for semantic run-trees and for derivation
trees with the rule Yσ.

Note that we restrict our attention to empty contexts and thus to closed
terms, as our aim is to interpret the rules of higher-order recursion schemes,
which have this property. It would be more subtle to reflect in a typing rule the
semantics of the fixpoint operator Y on objects obtained as cartesian products
in the presence of parameters, as the model could provide contexts for several

2As the rule is very large, the hypothesis are superposed, and not written side-by-side as
usually.
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components of the product at the same time.

The semantics of µi(x1, . . . , xn). 〈 t1, . . . , tn 〉 is naturally defined as

[[µi(x1, . . . , xn). 〈 t1, . . . , tn 〉]]A = πi (Y ( [[λF. 〈u1, . . . , un 〉]]A ) )

where ui = ti[xj ← πj F ].

We devote the remaining of this section to the proof of the following propo-
sition, which is the keystone of the bridge between the semantics of higher-order
recursion schemes in the colored Scott model and their typings in Zstfix(G,A),
as we explain in the next section:

Proposition 34. Let t1, . . . , tn be λ-terms whose free variables are included
in the set {x1, . . . , xn}. Then we have that

α ∈ [[µi(x1, . . . , xn). 〈 t1, . . . , tn 〉]]A

if and only if, denoting σi the simple type of ti,

∅ ` µi(x1, . . . , xn). 〈 t1, . . . , tn 〉 : α :: σi

is typable by a winning derivation of Sfix(A).

Note that the semantic interpretation in the colored model ScottL   of the
λY -calculus of a higher-order recursion scheme G over the set of non-terminals
{F1 = S, . . . , Fn} is simply

[[G]]A = [[µ1(F1, . . . , Fn). 〈R(F1), . . . , R(Fn) 〉]]A

Definition 40. Given a higher-order recursion scheme G over the set of non-
terminals {F1 = S, . . . , Fn}, we set

µFi = µi(F1, . . . , Fn). 〈R(F1), . . . , R(Fn) 〉

so that in particular [[G]]A = [[µS]]A.

A corollary of this proposition is therefore

Corollary 7. Let A be an alternating parity tree automaton of set of states
Q, and G be a higher-order recursion scheme G over the set of non-terminals
{F1 = S, . . . , Fn}. Given a state q ∈ Q, we have that

q ∈ [[G]]A

if and only if there is a winning derivation of the sequent

∅ ` µS : q :: o

in Sfix(A).

In order to prove Proposition 34, we first prove a preparatory lemma.
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Lemma 26. Let t1, . . . , tn be terms whose free variables are contained in
{x1, . . . , xn}, and let i ∈ {1, . . . , n}. The sequent

x1 : {(cj1 , βj1) | j1 ∈ J1} :: σ1, . . . , xn : {(cjn , βjn) | jn ∈ Jn} :: σn ` ti : α :: σi

is provable in S(A) if and only if

( {(cjk , (k, βjk)) | 1 ≤ k ≤ n, jk ∈ Jk} , (i, α) ) ∈ [[λF. 〈 t1[xj ← πj F ], . . . , tn[xj ← πj F ] 〉]]A

Proof. We have that

x1 : {(cj1 , βj1) | j1 ∈ J1} :: σ1, . . . , xn : {(cjn , βjn) | jn ∈ Jn} :: σn ` ti : α :: σi

if and only if

∅ ` λx1 . . . , xn. ti : {(cj1 , βj1)} → · · · → {(cjn , βjn)} → α :: σ1 → · · · → σn → σi

if and only if, by Proposition 32,

({(cj1 , βj1)} , . . . , {(cjn , βjn)} , α) ∈ [[λx1 . . . xn. ti]]A ⊆ [[σ1 → · · · → σn → σi]]    (10.7)

In the semantics, using the usual isomorphisms of linear logic and notably the
Seely isomorphisms, we have that

[[σ1 → · · · → σn → σi]]    =    [[σ1]]    ( · · ·(    [[σn]]    ( [[σi]]    
∼= (   [[σ1]]    ⊗ · · · ⊗    [[σn]]    )( [[σi]]    
∼=    ([[σ1]]    & · · ·& [[σn]]    )( [[σi]]    

This sequence of isomorphisms maps the element

({(cj1 , βj1)} , . . . , {(cjn , βjn)} , α)

of the semantics to the element

({(cjk , (k, βjk)) | 1 ≤ k ≤ n, j ∈ Jk} , α)

and conversely. In the syntax, this amounts to “re-encoding” the term λx1 . . . , xn. ti
as the term with projections λF. ti[xj ← πj F ], so that (10.7) is equivalent to

({(cjk , (k, βjk)) | 1 ≤ k ≤ n, j ∈ Jk} , α) ∈ [[λF. ti[xj ← πj F ]]]A ⊆    

(
n̄

j=1

[[σj ]]    

)
( [[σi]]    

It is then immediate to check that this is equivalent to the fact that

({(cjk , (k, βjk)) | 1 ≤ k ≤ n, j ∈ Jk} , (i, α))

belongs to

[[λF. 〈 t1[xj ← πj F ], . . . , tn[xj ← πj F ] 〉]]A ⊆    

(
n̄

j=1

[[σj ]]    

)
(

n̄

j=1

[[σj ]]    
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Proof of Proposition 34. We start with the direct implication. Suppose
that

α ∈ [[µi(x1, . . . , xn). 〈 t1, . . . , tn 〉]]A
= πi (Y ( [[λF. 〈 t1[xj ← πj F ], . . . , tn[xj ← πj F ] 〉]]A ) )

By definition, this means that

(i, α) ∈ Y ( [[λF. 〈 t1[xj ← πj F ], . . . , tn[xj ← πj F ] 〉]]A )

which in turn implies that there exists a winning semantic run-tree of the shape

(i, α)

(dm, βm)

...
...

· · ·(d1, β1)

...
...

where the color of the node (dl, βl) is cl, and such that

{ (cl, (dl, βl)) | 1 ≤ l ≤ m } ∈ [[λF. 〈 t1[xj ← πj F ], . . . , tn[xj ← πj F ] 〉]]A

By Lemma 26, we have that the sequent

. . . , xk : {(cl, βl) | dl = k} :: σk, . . . ` ti : α :: σi

is provable in the system S(A). We obtain the beginning of a derivation tree:

∅ ` µdl(x1, . . . , xn). 〈 t1, . . . , tn 〉 : βl :: σdl for every 1 ≤ l ≤ m
. . . , xk : {(cl, βl) | dl = k} :: σk, . . . ` ti : α :: σi

∅ ` µi(x1, . . . , xn). 〈 t1, . . . , tn 〉 : α :: σi

and we iterate this construction on every leaf

∅ ` µdl(x1, . . . , xn). 〈 t1, . . . , tn 〉 : βl :: σdl

This builds a potentially infinite derivation tree of Sfix(A), which is winning
since every of its infinite branches corresponds to an infinite branch of the win-
ning semantic run-tree we considered, and since precisely the same sequence of
colors can be read along it.

Conversely, consider a winning derivation of the sequent

∅ ` µi(x1, . . . , xn). 〈 t1, . . . , tn 〉 : α :: σi

in Sfix(A). It necessarily starts as

∅ ` µk(x1, . . . , xn). 〈 t1, . . . , tn 〉 : βjk :: σk for every 1 ≤ k ≤ n and jk ∈ Jk
x1 : {(cj1 , βj1) | j1 ∈ J1} :: σ1, . . . , xn : {(cjn , βjn) :: σn | jn ∈ Jn} ` ti : α :: σi

∅ ` µi(x1, . . . , xn). 〈 t1, . . . , tn 〉 : α :: σi
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and we can apply Lemma 26 to the sequent

x1 : {(cj1 , βj1) | j1 ∈ J1} :: σ1, . . . , xn : {(cjn , βjn) :: σn | jn ∈ Jn} ` ti : α :: σi

from which we deduce that

( {(cjk , (k, βjk)) | 1 ≤ k ≤ n, jk ∈ Jk} , (i, α) ) ∈ [[λF. 〈 t1[xj ← πj F ], . . . , tn[xj ← πj F ] 〉]]A

We use this information to start building a semantic run-tree of [[λF. 〈 t1[xj ←
πj F ], . . . , tn[xj ← πj F ] 〉]]A:

(i, α)

· · ·(k, βjk)· · ·

where we attribute the color cjk to the node (k, βjk). We iterate this con-
struction process, and create in this way a semantic run-tree of [[λF. 〈 t1[xj ←
πj F ], . . . , tn[xj ← πj F ] 〉]]A. This run-tree is winning, as the colorings of its
infinite branches are the same as the ones of the derivation tree we consider.
We then obtain that

α ∈ [[µi(x1, . . . , xn). 〈 t1, . . . , tn 〉]]A

simply by applying the projection πi.

10.6 Decidability of the local higher-order
model-checking problem

In this section, we prove the decidability of two of the higher-order model-
checking problems stated in §3.4: the local higher-order model-checking prob-
lem, and the selection problem, both in their automata-theoretic formulation.
Recall that the third problem, namely global higher-order model-checking, is
a consequence of the selection problem. These two decidability results are ob-
tained as a consequence of a semantic soundness-and-completeness theorem,
analogous to Theorem 19, and of the finiteness of the colored Scott semantics.

We start by extending the connection between derivations of terms in β-
normal η-long forms in the type systems Zst(A) and S(A) studied in §10.3 to
the type systems Zstfix(G,A) and Sfix(A). We extend the notion of derivation
without subtyping to the system Sfix(A) by formulating exactly the same re-
strictions on the rules Axiom and δ. The notion of β-normal η-long form is
adapted to recursion schemes as follows:

Definition 41 (β-normal η-long form of a HORS). Let G = 〈Σ,N ,R, S〉 be
a recursion scheme. We define its β-normal η-long form as the higher-order
recursion scheme Gβη = 〈Σ,N ,Rβη, S〉 which only differs of G by the fact that
Rβη maps any non-terminal F ∈ N to the β-normal η-long form of the term
R(F ).

We say that G is in β-normal η-long form precisely when G = Gβη.

G and Gβη generate the same tree, so that we can harmlessly consider Gβη
instead of G in the sequel:



264
CHAPTER 10. FINITARY SEMANTICS AND DECIDABILITY OF

HIGHER-ORDER MODEL-CHECKING

Proposition 35. 〈 G 〉 = 〈 Gβη 〉.

Theorem 28 adapts in this case to:

Proposition 36. Let G = 〈Σ,N ,R, S〉 be a higher-order recursion scheme
and Gβη = 〈Σ,N ,Rβη, S〉 be its β-normal η-long form. Suppose that N =
{F1, . . . , Fn}. Then

∅ ` µi(F1, . . . , Fn). 〈R(F1), . . . , R(Fn) 〉 : α :: κ(Fi)

is provable in Sfix(A) if and only if

∅ ` µi(F1, . . . , Fn). 〈Rβη(F1), . . . , Rβη(Fn) 〉 : α :: κ(Fi)

is provable without subtyping in Sfix(A). Moreover, there exists a winning
derivation of one of these sequents if and only if there exists one of the other.

Proof. A derivation of

∅ ` µi(F1, . . . , Fn). 〈R(F1), . . . , R(Fn) 〉 : α :: κ(Fi) (10.8)

is of the shape

∅ ` µk(F1, . . . , Fn). 〈R(F1), . . . , R(Fn) 〉 : βjk :: κ(Fk) for every 1 ≤ k ≤ n and jk ∈ Jk
F1 : {(cj1 , βj1) | j1 ∈ J1} :: κ(F1), . . . , Fn : {(cjn , βjn) :: κ(Fn) | jn ∈ Jn} ` R(Fi) : α :: κ(Fi)

∅ ` µi(F1, . . . , Fn). 〈R(F1), . . . , R(Fn) 〉 : α :: κ(Fi)

By Theorem 28, the sequent

F1 : {(cj1 , βj1) | j1 ∈ J1} :: σ1, . . . , Fn : {(cjn , βjn) :: σn | jn ∈ Jn} ` R(Fi) : α :: σi

can be translated into a proof without subtyping in S(A) of the sequent

F1 : {(cj1 , βj1) | j1 ∈ J1} :: σ1, . . . , Fn : {(cjn , βjn) :: σn | jn ∈ Jn} ` Rβη(Fi) : α :: σi

We replace in the proof of (10.8) the first derivation by the second, and iterate
the process on the nodes

∅ ` µk(F1, . . . , Fn). 〈R(F1), . . . , R(Fn) 〉 : βjk :: κ(Fk)

We obtain in this way a proof without subtyping of

∅ ` µi(F1, . . . , Fn). 〈Rβη(F1), . . . , Rβη(Fn) 〉 : α :: κ(Fi)

The converse direction proceeds similarly. Note that the translation does
not affect the coloring of nodes.

Recall the translations (| · |) and |) · (| between colored sets and colored
intersection types of §10.3. We may now adapt Corollary 6 to higher-order
recursion schemes:
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Proposition 37. Let G be a higher-order recursion scheme in β-normal η-long
form, whose set of non-terminals is {F1, . . . , Fn}. Then the sequent

∅ ` µFi : α :: κ(Fi)

is provable in Sfix(A) if and only if the sequent

Fi :
∧
{1}

�ε (|α |) :: κ(Fi) ` Fi : (|α |) :: κ(Fi)

is provable in Zstfix(G,A). Moreover, there is a winning derivation of the first
sequent in Sfix(A) if and only if there is a winning derivation of the second in
Zstfix(G,A).

Proof. The proof of the direct implication proceeds by translation of a deriva-
tion π of

∅ ` µFi : α :: κ(Fi)

in Sfix(A) to a derivation {|π |} of

Fi :
∧
{1}

�ε (|α |) :: κ(Fi) ` Fi : (|α |) :: κ(Fi)

in Zstfix(G,A). We define the translation {|π |} as follows. The derivation π in
Sfix(A) is of the shape

πjk
...

∅ ` µk(F1, . . . , Fn). 〈R(F1), . . . , R(Fn) 〉 : βjk :: κ(Fk) for every 1 ≤ k ≤ n and jk ∈ Jk
F1 : {(cj1 , βj1) | j1 ∈ J1} :: σ1, . . . , Fn : {(cjn , βjn) :: σn | jn ∈ Jn} ` R(Fi) : α :: σi

∅ ` µi(F1, . . . , Fn). 〈R(F1), . . . , R(Fn) 〉 : α :: σi

and we can use Corollary 6 to translate the subproof of

F1 : {(cj1 , βj1) | j1 ∈ J1} :: σ1, . . . , Fn : {(cjn , βjn) :: σn | jn ∈ Jn} ` R(Fi) : α :: σi

into a proof πR of Zst(A). We then define {|π |} as:

. . . , Fk :
∧
jk∈Jk �cjk (|βjk |), . . . ` R(Fi) : (|α |)

fix
Fi :

∧
{1} �ε (|α |) ` Fi : (|α |)

{|πjk |}
...fix

Fk : �ε (|βjk |) ` Fk : (|βjk |)

{|πjk′ |}
... fix

Fk′ : �ε (|βjk′ |) ` Fk′ : (|βjk′ |)

πR
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Note that we replace the Axiom leaves of πR introducing non-terminals by
appropriate instances of the fix rule.

By Proposition 16, the maximal color seen along the finite path leading
from the root of {|π |} to the node

Fk : �ε (|βjk |) ` Fk : (|βjk |)

is precisely the color cjk , which is also the one of the node

∅ ` µk(F1, . . . , Fn). 〈R(F1), . . . , R(Fn) 〉 : βjk :: κ(Fk)

in π. From this observation, it is easy to relate the infinite branches of both π
and {|π |} and to notice that they have the same maximal color seen infinitely
often.

The converse direction of the proof proceeds similarly, by the reverse trans-
lation of a proof of Zstfix(G,A) into a proof of Sfix(A).

A consequence of these results is the following theorem of “semantic soundness-
and-completeness”, which establishes a perfect correspondence between our fini-
tary interpretation [[G]]A of the higher-order recursion scheme G in the Scott
semantics, and the set of accepting states of the automaton A :

Theorem 32. An alternating parity tree automaton A has an accepting run-
tree with initial state q0 over the value tree 〈 G 〉 of a productive higher-order
recursion scheme G if and only if q0 ∈ [[G]]A.

Proof. Let G = 〈Σ,N ,R, S〉 be a higher-order recursion scheme and Gβη =
〈Σ,N ,Rβη, S〉 be its β-normal η-long form. Suppose thatN = {F1 = S, . . . , Fn}.
By Corollary 7, we have that q0 ∈ [[G]]A if and only if there is a winning deriva-
tion of the sequent

∅ ` µ1(F1, . . . , Fn). 〈R(F1), . . . , R(Fn) 〉 : q0 :: o

in Sfix(A). By Proposition 36, this is equivalent to the existence of a winning
derivation of the sequent

∅ ` µ1(F1, . . . , Fn). 〈Rβη(F1), . . . , Rβη(Fn) 〉 : q0 :: o

proved without subtyping in Sfix(A). By Proposition 37, this is equivalent to
the fact that the sequent

S :
∧
{1}

�ε q :: o ` S : q :: o

has a winning proof in the type system Zstfix(Gβη,A). This is equivalent to
the fact that Eve has a winning strategy in the game Adamicst(Gβη,A), and,
by Theorem 20, this is in turn equivalent to the fact that A has an accepting
run-tree with initial state q0 over the value tree 〈 Gβη 〉. We conclude using
Proposition 35, which states that 〈 G 〉 = 〈 Gβη 〉.
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Note that it would be interesting to obtain a more general and dual version
of Theorem 32, in the spirit of the theorems of §9.2 and of Conjecture 1. In this
generalization relying on Church encodings, the interpretation of higher-order
recursion schemes (and of the associated λY -terms) would be independent of
the automaton of interest. However, as explained earlier, a difficulty here is
that considering the terminals of Σ as variables and no longer as constants
requires to use parameters when computing the fixpoint Y in the model. In
the presence of subtyping and of cartesian products, this seems to forbid the
use of typing rules for the operators µi, as parameters coming from different
components of a cartesian product could be present in the model. This would
be an obstruction to their presentation as the context of only one rule µFi,
which supposes a projection on only one component of the product.

By Corollary 7, checking whether q0 ∈ [[G]]A is equivalent to checking
whether there exists a derivation of the sequent ∅ ` µS : q0 :: o in the
colored intersection type system Sfix(A). Since the interpretation of simple
types in FinScottL is finite, only finitely many intersection types and con-
texts may occur in such a derivation. Hence, searching for a derivation of the
sequent ∅ ` µS : q0 :: o reduces in this case to solving a finite parity game
whose nodes are precisely all the sequents that may appear in a derivation tree.
Since the winner of a parity game is decidable by Theorem 5, we immediately
obtain:

Corollary 8. The local model-checking problem is decidable.

Complexity. The complexity of local higher-order model-checking already
appears in Ong’s first proof of decidability [Ong06] and is, as we explained ear-
lier, n-EXPTIME, where n is the order of the higher-order recursion scheme of
interest. It makes sense to give a bit more details: in his article, the complexity
is

expn
(
O
(
|Gt| · |Q| · |Ω(Q)|

))
where |Gt| is the size of the HORS obtained from G by, roughly speaking, taking
its β-normal η-long form3, |Q| is the size of the set of states of the automaton of
interest, and |Ω(Q)| the one of its set of colors. The function expn corresponds
to the iteration of n applications of the exponential.

The problem can also be solved by working directly with the recursion
scheme of interest, as in [KO09] for instance, where the complexity is

O
(
|R|1+c|Ω(Q)| · expn (O (A · |Q| · |Ω(Q)|))

)
Here, A is the maximal arity of a non-terminal of N or of a terminal of Σ, Q is
the set of states of the automaton of interest, |R| the number of rewrite rules
of the recursion scheme, and c is a constant whose value is approximately 1

3
and which comes from the application of Schewe’s algorithm for solving parity
games [Sch07]. Interestingly, this complexity result refines Ong’s original one
by several aspects:

3In fact, Ong also inserts special symbols @ to freeze redexes, but this does not essentially
changes the size of the scheme. See [Ong06] or [Gre10] for more details on the transformation
and its importance in Ong’s approach, based on game semantics.
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• it only considers the size of the higher-order recursion scheme, computed
as its number of rules: this is notably independent on whether we con-
sider it in β-normal η-long form, or in the slightly different frozen form
originally introduced by Ong,

• and it makes clearly appear that the problem is polynomial in the size of
the higher-order recursion scheme, and that its exponential component
only depends on the maximal arity of a symbol and on the size of the
automaton of interest. Roughly speaking,

the local higher-order model-checking problem is polynomial in the size
of the higher-order recursion scheme, and n-exponential on the size of

the alternating parity automaton of interest.

This explains why the several practical model-checkers designed in higher-
order model-checking can be used in practice in spite of the seemingly
huge complexity of the problem. It should be noted that the first tools,
namely TRecS [Kob09a], GTRecS [Kob11], GTRecS2, C-SHORe [BCHS13],
and TravMC [NRO12] only considered properties specified by tree au-
tomata with trivial acceptance conditions.

However, the tools TRecS-APT [FIK13] and TravMC2 [NO14] consider
all alternating parity automata and therefore support the verification
of all properties expressible in the bisimulation-invariant fragment of
monadic second-order logic.

Our approach allows to find a similar complexity: deciding the problem
amounts to solving a parity game over the fragment of the model allowing
to interpret all subterms of the recursion scheme, so that we can restrict on
the interpretation of types up to some fixed arity and order. This gives a
finite parity game, which is n-exponential in the maximal arity occurring in
the HORS and in the size of the set of states of the automaton: recall that we
can understand the interpretation of a type as the set of colored, idempotent
intersection types refining it. The solution of the game is then in NP ∩ coNP ,
so that the problem is in n-EXPTIME. An interesting connection with linear
logic could be investigated here, as the intersection operator corresponds to the
exponential modality. The order of a HORS indeed corresponds to the maximal
depth of exponential boxes nested between fixpoint calls, and it would be nice to
relate this to characterizations in light linear logic or in elementary linear logic
of the n-EXPTIME complexity class, as investigated for instance by Baillot
in [Bai11].

Extensional collapses. Since we explained in §5.4 that the Scott model
of linear logic is the extensional collapse of its relational semantics, as proved
in [Ehr12b], this relation has been guiding our extension of both semantics with
coloring, and countable multiplicities in the quantitative case of the relational
model. Note in particular that the definition of the coloring comonad � in the
Scott semantics is precisely obtained as a collapse of its relational counterpart:
by replacing multisets with sets, and by saturating the relation to obtain a
downward-closed one. We believe that the models we obtained are related by
an extensional collapse relation:
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Conjecture 2. We conjecture that the notion of extensional collapse formu-
lated by Ehrhard [Ehr12b] for cartesian closed categories from Bucciarelli’s ax-
iomatization [Buc97] can be extended to such categories with a Conway opera-
tor, in such a way that the colored Scott model of linear logic is the extensional
collapse of its colored, infinitary relational semantics.

Note that a corollary of this conjecture would be that Conjecture 1 holds. In a
first time, we believe that it would be interesting to take a syntactic approach to
understand the problem better, and to start from Sfix(A) together with its non-
idempotent counterpart – with infinite multiplicities. We believe that the latter
system can be used to capture the infinitary colored relational semantics of λY -
terms. Focusing on β-normal η-long forms allows not to consider subtyping in
the idempotent system, and investigating the collapse would probably reduce
in this type-theoretic setting to relating non-idempotent intersection types with
the idempotent intersection types obtained by forgetting the multiplicities of
use of types.

10.7 Decidability of the selection problem

Now that we obtained the decidability of the local higher-order model-checking
problem, we can go further and prove that the selection problem defined by
Carayol and Serre in [CS12] is decidable. We focus on its automata-theoretic
reformulation due to Haddad [Had13a]:

Given a higher-order regular tree 〈 G 〉 computed by a higher-order
recursion scheme G, an alternating parity automaton A, and a state
q of this automaton from which 〈 G 〉 is accepted, can we compute
a higher-order recursion scheme Gq producing a winning run-tree
〈 Gq 〉 of A from q over 〈 G 〉?

We obtain a new proof of the decidability of this problem, which appears
already in [CS12] and in [Had13a,Had13b]. A difference in our approach is that
we consider alternating parity tree automata, and not just non-deterministic
ones. While these two classes of automata are equivalent by Theorem 4, our
approach based on linear logic makes it natural to consider alternating au-
tomata.

Theorem 33. The selection problem is decidable.

Proof. To prove the decidability of the local higher-order model-checking prob-
lem (Corollary 8), we used Theorem 5, which implies the existence of a memo-
ryless winning strategy on the finite parity game used to build a winning deriva-
tion tree typing G with the initial state q0. In this setting, winning strategies
correspond to winning derivation trees of the intersection type system Sfix(A),
and memoryless strategies correspond to derivation trees admitting a finite rep-
resentation using backtracking pointers.

Let G = 〈Σ,N ,R, S〉 be a productive higher-order recursion scheme, A =
〈Σ, Q, δ, q0, Ω〉 be an alternating parity tree automaton, and q ∈ Q be a state
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from which 〈 G 〉 is accepted by A. We write N = {S = F1, . . . , Fn }. By
Theorem 32 and Corollary 7, there exists a winning derivation of the sequent

∅ ` µF1 : q :: o (10.9)

in Sfix(A). As we just explained, Theorem 5 allows to deduce the existence of
regular derivation of the sequent (10.9) — this meaning that this derivation can
be obtained as the unfolding of a finite derivation with backtracking pointers.

We fix such a finite representation π. It is typically of the following form:

π1

F1 :{(cj1 ,βj1 ) | j1∈J1},... ` R(Fi) :α

∅ ` µFk′′ : β′′
j′′
k′′

...
∅ ` µFk : βjk

...
∅ ` µFk′ : β′

j′
k′

∅ ` µF1 : q (10.10)

We suppose that each occurrence of a sequent

∅ ` µFk : βk :: κ(Fk) (10.11)

in π is precisely located by an integer we refer to as occ. This allows us to
distinguish between different nodes of π labeled with a same sequent (10.11).
In (10.11), we say that Fk has type βk in occ.

We now explain how we define the annotated higher-order recursion scheme

Gq = 〈Σq,Nq,Rq, Sq〉

Note that this definition depends on the choice of π, even though we do not
write it explicitly to lighten notations. We define

Σq =
{
aα | α = u1 → · · · → uar(a) → q :: oar(a) → o

}
We then set

Nq =
{
F βi,occ | Fi ∈ N and Fi has type β in occ

}
Let F βi,occ ∈ Nq. Suppose that

β =
∧
i1∈I1

σ1i1 → · · · →
∧
in∈In

σ1in → q :: κ1 → · · · → κn → o (10.12)

then
κ(F βi,occ) = κ1 → · · · → κ1︸ ︷︷ ︸

|I1| times

→ · · · → κn → · · · → κn︸ ︷︷ ︸
|In| times

→ o
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Accordingly, we label the variables in Gq: they will be of the form ϕβ , where
ϕ is a variable of the higher-order recursion scheme G and β is as in (10.12).
The variable ϕβ has the same simple type as F βi,occ.

It remains to define the set Rq of rewrite rules for Gq. We first introduce
the term transformation {| · |}απ,occ , which maps a λ-term without abstractions
and of set of constants Σ ] N to a λ-term without abstractions and of set of
constants Σq ] Nq. Consider the occurrence occ of a non-terminal Fi. In π, it
occurs as in (10.10), and it introduces the term t = R(Fi), itself typed by the
subproof π1 rooted at the left successor of the node corresponding to occ. The
transformation {| · |}απ,occ rewrites t as follows:

• {|Fi |}απ,occ = Fαi,occ′ , where occ′ is the occurrence corresponding to the
non-terminal of interest in the proof π,

• {| a |}απ,occ = aα,

• {|x |}απ,occ = xα,

• {|M N |}βπ,occ = {|M |}{(c1,α1),...,(cn,αn)}→β
π,occ {|N |}α1

π,occ · · · {|N |}αnπ,occ
where {(c1, α1), . . . , (cn, αn)} → β is the type of M in the subproof π1.

Now, for every occurrence occ of a non-terminal Fi with type

β = {(c11, α11), . . . , (c1k1
, α1k1

)} → · · · → {(cn1, αn1), . . . , (cnkn , αnkn)} → q

we define the corresponding rewriting rule as follows:

F βi,occ = λxα11
1 . . . . λx

α1k1
1 . . . . λxαn1

n . . . . λx
αnkn
n . {|R(Fi) |}qπ,occ

To ease reading, we sometimes use a vectorial notation for terms: the rewriting
rule associated with F βi,occ is then written

F βi,occ = λ ~x1. . . . λ ~xn. {|R(Fi) |}qπ,occ

and in the definition of {| · |}απ,occ , we write

{|M N |}βπ,occ = {|M |}{(c1,α1),...,(cn,αn)}→β
π,occ

−−−−−−−→
{|N |}αiπ,occ

With these notations, the rules of Rq appear as a « vectorialization » of the
rules of R. In fact the only change is that, following the intuition that the
intersection operator on types lifts to higher-order the alternating behavior of
APT, we perform the duplications of the APT directly in the terms defining
G, by using the information on duplication contained by the proof π.

We claim that 〈 Gq 〉 is a winning run-tree of A over 〈 G 〉, with the mild
difference that symbols are annotated with transitions of A rather than simply
with states. It suffices to change the labels of the symbols of Σ in Gq and only to
remember the return state of the transitions decorating the symbols to obtain
a run-tree. Another way, due to Haddad [Had13b], is to turn every labeled
terminal aα into the non-terminal Aα, with the rewriting rule Aα → aq, where

α = β1 → · · · → βn → q.





Chapter 11

Contributions and perspectives

The purpose of this thesis was to connect higher-order model-checking to a
series of advanced ideas in contemporary semantics, like linear logic and its re-
lational semantics, indexed linear logic, distributive laws, parametric comonads
and tensorial logic. All these ingredients met and combined surprisingly well
with higher-order model-checking. The approach revealed in particular that
the traditional treatment of inductive-coinductive reasoning based on colors is
secretly founded on the same comonadic principles as the exponential modality
of linear logic. This discovery led us to the definition of both qualitative and
quantitative denotational models of linear logic in which higher-order recur-
sion schemes can be interpreted in a way that is for the first time meaningful
to higher-order model-checking. The correspondence between our finitary and
colored Scott-relational interpretation of linear logic and higher-order model-
checking is established in two main technical steps: first, we identify our finitary
interpretation to a modal intersection type system which improves the system
originally defined by Kobayashi and Ong; then, we adapt to our modal intersec-
tion type system the soundness-and-completeness proof by Kobayashi and Ong
in order to obtain the expected correspondence. We obtain in this way a model
in which the interpretation of a higher-order recursion scheme with respect to a
given alternating parity tree automaton is precisely the set of states from which
this automaton accepts the infinite value tree of the scheme. The finiteness of
the semantics permitted us to solve not only the local model-checking problem,
but also the selection problem.

To conclude this thesis, we list our contributions and the potential research
directions that arise from the semantic analysis of higher-order model-checking
conducted in this document. Most of these contributions appear in our arti-
cles with Melliès [GM15a,GM15b,GM15c,GM15d]. We present them following
their order of introduction in the manuscript.

We start this thesis with an essentially pedagogical contribution, which
consists in the exposition of the core ingredients of higher-order model-checking
in Part I. Our aim in this part, and mainly in the first two chapters of this thesis,
was to give a self-contained introduction to alternating parity tree automata
and related logics over trees, as well as to higher-order recursion schemes and to
the equivalent λ-terms with recursion, in order to state the three main problems
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of higher-order model-checking: local and global model-checking, and selection.

A coinductive approach to higher-order model-checking. Our first,
yet very preliminary scientific contribution is presented in Chapter 4, in which
we introduce coinduction quite informally, and give a coinductive framework
for the evaluation of higher-order recursion schemes adapted from the one of
Czajka [Cza15] for infinitary λ-terms, and which is also related to Endrullis and
Polonsky’s approach [EP11]. We formulate this framework from the idea that
HORS, being equivalent to λY -terms, can be understood as regular simply-
typed infinitary λ-terms over a signature of constants. Their normalization
can therefore be studied using the coinductive concepts considered in infinitary
rewriting theory, instead of using the traditional supremum of finite approxi-
mations of the value tree.

Given a HORS G and an alternating tree automaton A, we also define
a non-deterministic coinductive rewriting relation →∞G,A which computes the
run-trees of A over the tree 〈 G 〉 produced by the infinitary head normaliza-
tion of G. This synchronization of the computation of 〈 G 〉 by head reduction
with the execution of the alternating tree automaton A is reminiscent of Salvati
and Walukiewicz’s approach using Krivine machines [SW14], but it is presented
here using coinduction. To our knowledge, coinductive rewriting has never been
considered for higher-order recursion schemes. We believe that it brings new
tools and techniques which can be of interest in higher-order model-checking.
The motivation underlying our coinductive formulation of →∞G,A is the follow-
ing one: although we did not proceed in this way in the manuscript, we believe
that it is possible to establish the soundness-and-completeness theorem (Theo-
rem 19 in §6.4) directly on the type system with infinite derivations Zfix(G,A),
by taking advantage of the coinductive (rather than inductive) formulation of
→∞G,A. The proof would be in the same mood as the proof of coinductive sub-
ject reduction given for simple types in §4.3. In this coinductive framework,
a natural temptation would be to extend the soundness-and-completeness the-
orem to the general case of infinitary λ-terms, which would be undecidable.
Lemma 11 suggests however that the extension could only hold on a fragment
of these terms, and it would be interesting to have a better understanding of
the phenomenas it reveals.

Another interest of this coinductive approach is that we believe that it
would lead to a conceptually cleaner proof, which could be easier to adapt to
other classes of automata than APT, but which could also allow a neat proof
in the case of non-idempotent intersection types with countable multiplicities.
A last point is that, as explained in §6.5, we conjecture that the completeness
proof could be more natural when devised coinductively.

In a broader perspective, the proofs and translations on infinite objects
appearing in this thesis could be reformulated in a coinductive manner. This
would pave the way towards an implementation of higher-order model-checking
in proof assistants like Coq, in which coinduction is the typical reasoning mech-
anism for dealing with infinitary structures and proofs using them.

A modal reformulation of the Kobayashi-Ong type system. Our main
technical contribution, and the cornerstone of our work, lies in our study of
the type system KO(A) of Kobayashi and Ong, and in its reformulation as the
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modal type system Z(A). The minor alterations we perform on the original col-
oring operation have major consequences, as they disclose that the coloring of
alternating parity automata behaves algebraically as a parametric comonad in
the sense of Melliès. This discovery is the source of the semantic constructions
of Part III, and leads us to introduce colored tensorial logic. Another impor-
tant and related contribution is our reformulation of the game Adamic(G,A) as
the type system Zfix(G,A): while Kobayashi and Ong’s original game focused
on decidability, and therefore emphasized on the uniformity of plays Eve could
achieve in a strategy, our reformulation allows a connection with proof theory,
deeply linked to tensorial logic and game semantics. We believe that the intro-
duction of the parity condition on derivation trees is conceptually interesting;
it notably motivates the definition of both parity fixpoints of Part III.

Since the coloring operation of APT corresponds to a parametric comonad,
and that the associated parity condition can be formulated directly over typing
derivations or in the semantics by means of a corresponding Conway operator,
it makes sense to wonder to which classes of tree automata the type-theoretic
and semantic soundness-and-completeness theorems could be accommodated.
A first natural question would be to consider the class of ω-regular winning
conditions introduced by Tsukada and Ong [TO14]; another would be to in-
vestigate the more general case of winning conditions expressed as Borel sets.
It would also make sense to consider automata handling coeffects as counters
or probabilities, which could certainly be modeled in appropriate relational
semantics – whose cardinality could become a hurdle to decidability, but nev-
ertheless allow compositional approaches.

An infinitary model of linear logic. We explain in Chapter 5 how non-
idempotent intersection types are connected to the relational semantics of linear
logic, and how this allows to solve the model-checking problem for the simple
case of lambda-terms without recursion and of alternating tree automata with-
out parity condition. Once the comonadic nature of the coloring operation
of APT revealed, it is natural to consider an extension of these relational se-
mantics in which we may interpret terms with recursion consistently with the
parity condition of APT. We first give an axiomatization of the equations ex-
pected of an appropriate fixpoint operator, by translating into the language of
linear logic the notion of Conway operator of Bloom and Esik [BÉ96]. This
leads to our third contribution, which is an infinitary variant of these familiar
relational semantics of linear logic, extended with a coloring comonad and an
inductive-coinductive Conway operator based on a parity acceptance condition.

An important aspect of this contribution is that we give a semantics which
is independent of the automaton of interest, and is only parametrized by a set
of states and a set of colors. This independence follows from a study of the dual
nature of higher-order recursion schemes and of alternating tree automata, at
the light of linear logic.

We conjecture that these semantics capture the higher-order model-checking
problem, for that the interaction – simply computed, due to the duality we
previously disclosed, by a relational composition – of a λ-term with recursion
computing a tree and of an alternating parity tree automaton contains the
initial state of the automaton if and only if it accepts the tree generated by the
term. We see two ways to prove this conjecture. The first one would be to prove
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that an extension with a countable multiplicity and a modal coloring annotation
of the non-idempotent intersection type system reflecting the usual, finitary
relational semantics characterizes the colored, infinitary relational semantics.
We would then have to adapt the proof of the soundness-and-completeness
theorem to the case of non-idempotent intersection types with a countable
multiplicity. The second option would be to prove Conjecture 2 and to use
the resulting extensional collapse to deduce the result from the colored Scott
semantics.

Another question would be to reformulate the inductive-coinductive fixpoint
operator simply by using the inductive and the coinductive fixpoints we intro-
duced on the infinitary relational semantics, and by applying one or the other
when interpreting terms, depending on the current color, in the spirit of the fini-
tary construction of Melliès [Mel14a] and of Salvati and Walukiewicz [SW15a].
Of course, the same question holds for the finitary semantics.

Colored tensorial logic. In addition to the semantic constructions it al-
lows, the discovery of the modal nature of the coloring operation of alternating
parity tree automata has logical consequences, which were not explored in this
thesis. Our fourth contribution, the introduction of colored tensorial logic, is a
first step towards a natural connection between the infinitary colored relational
semantics of linear logic and an associated extension of dialogue games with
parity conditions. Seeing the infinitary relational model as a dialogue cate-
gory [Mel09,Mel16a,Mel12,Mel16b], this connection paves the way towards an
extension of the existing triptych: « tensorial logic, dialogue games, dialogue
categories » with infinite interactions regulated by an inductive-coinductive
fixpoint policy.

Alternatively, it would make sense to introduce an infinitary extension of
tensorial logic with both an inductive fixpoint operator µ and a coinductive one
ν. This would probably lead to an equivalent logical framework, which could
then be related to Santocanale’s calculus of circular proofs [San02a, San02b,
FS13], in which proofs of infinitary depth obtained by iteration of an inductive
and of a coinductive fixpoint operators are considered. It should be pointed
out that these circular proofs were introduced in relation with parity games.
Connections may also appear with µMALL, an extension of the multiplicative-
additive fragment of linear logic with inductive and coinductive fixpoint opera-
tors considered by Baelde in [Bae12]. This variant of colored tensorial logic with
inductive and coinductive fixpoints could in turn be connected to an infinitary
game semantics obtained from an extension of dialogue games with inductive
and coinductive fixpoints, in the spirit of Clairambault’s work [Cla09,Cla13].

Yet another potential connection with logical aspects would be to study ex-
tensions of differential linear logic [ER05,Ehr16]. As stressed in §9.1, the reason
to interpret non-deterministic, and more generally alternating tree automata in
the relational semantics of linear logic instead of carrying our analysis further
in linear logic itself is its lack of non-determinism. Differential linear logic can
be considered as a non-deterministic extension of linear logic deeply related to
the relational semantics, but on the logical side, so that it could be interesting
to study its extension with infinitary multisets, coloring and fixpoints as well.
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Finitary models and decidability. Obtaining decidability results for the
higher-order model-checking problems requires to adapt our infinitary approach
to a finitary model of linear logic. As suggested by Ehrhard’s extensional col-
lapse result, our fifth contribution is to consider the Scott semantics of linear
logic and to extend it with a coloring modality and an inductive-coinductive
fixpoint operator, both adapted from the case of the infinitary relational se-
mantics. Our approach provides a rigorous and compositional treatment of
higher-order model-checking, and adapts to the inductive-coinductive frame-
work of MSO logic a nice and well-established connection between linear logic,
Scott domains, and intersection types. From this connection follows the decid-
ability of the local higher-order model-checking problem, and of the selection
problem. We explain the complexity results obtained by previous approaches
as the size of the fragment of the model – or of the set of intersection types –
whose exploration is required to build a denotation – or, equivalently, a typing
derivation – for the higher-order recursion scheme of interest.

Perspectives include quite important but also technical questions. A first
question would be to extend our approach to a framework in which the in-
terpretation of constants is not fixed, but parametrized by means of a Church
encoding, as we did for the infinitary semantics in Chapter 9. Another question
would be to obtain a reformulation of the parity fixpoint using the traditional
inductive and coinductive ones, as already discussed for the infinitary model;
and a last one would be to give a more direct proof of the semantic soundness-
and-completeness theorem by adapting the theorem for Zstfix(G,A) to a variant
with subtyping, instead of relying on β-normal η-long forms to eliminate it.

Several more elaborate perspectives arise as well. The first one would be to
look for a relation between the complexity obtained using this finitary approach
and light linear logics, in which characterizations of the n-EXPTIME complex-
ity classes arise and notably make use of a measure of the depth of nesting of
exponential boxes, which is related in our case to the order of the recursion
scheme of interest. The second question is motivated by the existing relation
between the relational semantics of linear logic and game semantics: is there a
model of game semantics corresponding to the Scott semantics? Is it enough to
consider an exponential construction on games which opens copies of a dialogue
game only when it corresponds to an interaction which was not played earlier,
and uses some memory to directly give the result without opening a new copy
of the arena otherwise?

Extensional collapses. On this last point, we only formulate perspectives.
Our semantic investigation of higher-order model-checking was deeply inspired
by Ehrhard’s extensional collapse result [Ehr12b], which states that the col-
lapse of the relational model of linear logic corresponds to its Scott seman-
tics. Connections with associated idempotent and non-idempotent type sys-
tems [BE01,dC09,Ter12,Ehr12a] were essential to our study, and seem to hold
when these systems are extended with a coloring modality and a parity fix-
point operator building infinite derivations. A first point would be to check
that such type-theoretic connections indeed hold, and to use them to formulate
a notion of extensional collapse adapted to the case of our study. Obtaining a
collapse result would allow to deduce a semantic soundness-and-completeness
theorem for the infinitary case directly for the finitary one, solving in this way
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Conjecture 1.
This idea of extensional collapse also rises an interesting question regarding

continuity : we claimed that the interpretation of λY -terms in our infinitary,
colored relational semantics was not continuous, for that the discrimination of
witness trees with respect to the parity condition is only performed on infinitary
trees, and not on their finite approximations. On the other hand, the interpre-
tation in finite models can be considered as continuous, as the computation of
the denotation of a term ends after a finite amount of steps. Type-theoretically,
this comes from the memoryless determinacy of parity games, which leads to
looking only for « regular » derivations, always typing a given sequent in the
same way. Suggesting that a collapse relation exists between our finitary and
infinitary models leads to wonder whether such a characterization could be
given in the infinitary semantics: we conjecture that if there is a derivation
typing a λY -term in these semantics, then there exists a « regular » deriva-
tion, in a bit more refined sense since the multiplicities occurring in the contexts
need to be updated between two proofs of a « similar » sequent. In some sense,
in addition to the backtracking pointers used to represent regular proofs in
the finitary case, some context needs to be added to the one of the sequent of
interest every time the loop is visited. It would be interesting to formalize this
notion, and to understand how it relates to continuity.

The last point comes from the perspective of an extension of the soundness-
and-completeness result to other classes of tree automata, as automata with
counters or probabilities for instance. As in the approach we took in this thesis,
it is easier to extend the relational semantics in a first time, and then to devise
an appropriate companion Scott semantics. In the event of the existence of
an extensional collapse relation between the two resulting models, the finitary
model could be used to approximate quantitative properties of the relational se-
mantics in a smaller – and perhaps decidable, in some situations – denotational
model.
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ranked, 31
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bisimulation
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composite comonads and Seely

categories, 220
Rel, 105
ScottL, 111
Seely category, 105

coinduction, 38, 80
cogrammar, 84
coinductive relation, 83
coterm, 82
productivity, 85

color
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coloring function, 46

color modality
discussion on, 133
in Rel, 216
in ScottL, 236

complete lattice, 37
conjunctive clause, 44
context

domain, 61
subtraction, 99
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Conway operator, 196
corecursion

unique existence of a solution,
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corecursive structure, 80

distributive law, 135, 217
domain, 36
duality

between HORS and APT, 189
non-determinism vs. alterna-
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eta expansion, 53
and subtyping, 244
eta-long form, 244

extensional collapse, 112

fair rewrite sequence, 144
fixpoint, 37
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Conway operator, 196
existence in a complete lattice,
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parametrized fixpoint operator,

195
function
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game semantics, 49

higher-order recursion scheme, 64
non-deterministic, 172
order, 64
partial production, 66
productivity, 71
rewriting relation, 64
value tree, 68
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lambda calculus, 51
alpha conversion, 52
Böhm tree, 55
bound variable, 52
closed term, 52
confluence, 54
eta expansion, 53
eta reduction, 53
eta-long form, 244
free variable, 52
head reduction, 55
infinitary normalization, 87
infinitary subject reduction, 90
infinitary terms, 81, 84
normal form, 53
redex, 52
reduction strategy, 53, 54
simply typed, 57
simply-typed infinitary terms,
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standard reduction, 55
strong normalization, 54, 60
subject reduction, 60
terms, 51
weak normalization, 54
with typed fixpoints, 72

lambda Y calculus
definition, 72
subject reduction, 72

linear logic, 61
indexed linear logic, 109
relational model, 105
Scott model, 111

monadic second order logic, 34
and mu-calculus, 35
bisimulation invariance, 35
informal definition, 34
weak MSO, 36
weak MSO and mu-calculus, 41

MSO, see monadic second order logic
mu-calculus

alternation depth, 41
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and tree automata, 46
de Morgan duality, 40
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tree-model property, 41

parity game, 47
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partial order, 36
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complete, 36
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monotone function, 37
product, 36
supremum and infimum, 36

selection
statement of the problem, 75

signature, 31
subtyping

and Kobayashi-Ong types, 132
and the Scott model, 111
derivation without, 244
subtyping relation, 238

tensorial logic, 230
tree, 31

branch, 32
degree, 32
direction, 32
domain of trees, 66
higher-order regular, 71
labeled, 32
ranked, 32
regular, 32

tree automata
accepting run, 46
alternating, 43
alternating parity, 46
and mu-calculus, 46
non-determinization, 47
run-tree, 45

type
additive presentation, 59
arity, 58
idempotency, 110
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